Skip to main content
Log in

Interactive effects of phosphorus supply and light intensity on glucosinolates in pakchoi (Brassica campestris L. ssp. chinensis var. communis)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The influences of phosphorus (P) supply levels (1.00 and 0.01 mM) and different light intensities (normal and 60% shading) on plant growth and glucosinolate (GS) concentrations were investigated in pakchoi (Brassica campestris L. ssp. chinesis (L.) Makino var. communis Tsen et Lee) plants grown in nutrient solution. Low light intensity significantly decreased the shoot and root growth, particularly under P sufficiency. P deficiency significantly decreased the shoot growth under normal light intensity, but did not significantly affect the root growth irrespective of the light intensity. The root/shoot ratio was increased by P deficiency and high light intensity. P deficiency largely increased the concentration of total GSs under normal light intensity by 164%, but this effect was not significant under low light intensity. However, the effects of P supply level and light intensity on seven individual GSs and three classes of GSs (aliphatic, aromatic and indolyl GSs) were quite different. The concentrations of gluconapin, glucobrassicanapin, glucobrassicin, neoglucobrassicin, 4-methoxyglucobrassicin and gluconasturtiin were increased by P deficiency, especially under normal light intensity resulting in increases of 122%, 497%, 352%, 115% and 225%, respectively. Low light intensity decreased the concentrations of gluconapin, glucobrassicanapin, glucobrassicin and neoglucobrassicin under P deficiency condition, and increased the concentrations of glucobrassicin and 4-methoxyglucobrassicin and neoglucobrassicin under P sufficiency condition. The ratios of aliphatic, aromatic and indolyl GSs to total GSs were not significantly affected by P supply level under low light intensity. However, under normal light intensity, P deficiency increased the ratio of aliphatic GSs to total GSs from 58% to 67%, at the expense of aromatic ones, and did not affect the ratio of indolyl GSs to total GSs. Altered concentrations of free amino acids (GS precursors) could not be related to changes of individual GSs. The concentration of sulfur in pakchoi shoots was not significantly affected by different P levels and light intensities. The results indicate a role of P and light, and their interaction, on the concentrations and profiles of GSs in the shoots of pakchoi plants. However, the physiological and molecular mechanisms underlying this response await further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bloem E, Haneklaus S, Schnug E (2007) Changes in the sulphur and glucosinolate content of developing pods and seeds of oilseed rape (Brassica napus L.) in relation to different cultivars. Landbauforsch Volkenrode 57:297–306

    CAS  Google Scholar 

  • Bergmann W (1993) Ernährungsstörungen bei Kulturpflanzen, 3rd edn. Fischer, Jena

    Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97:194–208, doi:10.1111/j.1399-3054.1996.tb00497.x

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994a) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257, doi:10.1093/jxb/45.9.1251

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994b) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250, doi:10.1093/jxb/45.9.1245

    Article  CAS  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70(1):1–9, doi:10.1111/j.1751-1097.1999.tb01944.x

    Article  CAS  Google Scholar 

  • Chen XJ, Zhu ZJ, Gerendas J, Zimmermann N (2008) Glucosinolates in Chinese Brassica campestris vegetables: Chinese cabbage, purple cai-tai, choysum, pakchoi and turnip. HortSci 43(2):571–574

    Google Scholar 

  • Ciereszko I, Johanssonb H, Hurry V, Kleczkowskib LA (2001) Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis. Planta 212:598–605, doi:10.1007/s004250000424

    Article  CAS  PubMed  Google Scholar 

  • Ciereszko I, Johanssonb H, Kleczkowskib LA (2005) Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis. J Plant Physiol 162:343–353, doi:10.1016/j.jplph.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51, doi:10.1016/S0031-9422(00)00316-2

    Article  CAS  PubMed  Google Scholar 

  • Falk KL, Vogel C, Textor S, Bartram S, Hick A, Pickett JA, Gershenzon J (2004) Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of the chain elongation cycle in Eruca sativa. Phytochemistry 65:1073–1084, doi:10.1016/j.phytochem.2004.02.021

    Article  CAS  PubMed  Google Scholar 

  • Fredeen AL, Rao I, Terry N (1989) Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol 89:225–230, doi:10.1104/pp.89.1.225

    Article  CAS  PubMed  Google Scholar 

  • Grice AM, Loneragan NR, Dennison WC (1996) Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of seagrass. J Exp Mar Biol Ecol 195:91–110, doi:10.1016/0022-0981(95)00096-8

    Article  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333, doi:10.1146/annurev.arplant.57.032905.105228

    Article  CAS  PubMed  Google Scholar 

  • Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236, doi:10.1016/j.phrs.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  • He H, Fingerling G, Schnitzler WH (2000) Seasonal variations of the glucosinolate amounts in Brassica campestris L. spp. chinensis. J App Bot-Angewandte Botanik 74:198–202

    CAS  Google Scholar 

  • Hermans C, Hammon JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617, doi:10.1016/j.tplants.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  • Kläring HP, Schonhof I, Krumbein A (2001) Modelling yield and product quality of broccoli as affected by temperature and irradiance. Acta Hortic 566:85–90

    Google Scholar 

  • Kopsell DA, Kopsell DE (2006) Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends Plant Sci 11:499–507, doi:10.1016/j.tplants.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  • Krumbein A, Schonhof I, Schreiner M (2005) Composition and contents of phytochemicals (glucosinolates, carotenoids and chlorophylls) and ascorbic acid in selected Brassica species (B. juncea, B. rapa subsp. nipposinica var. chinoleifera, B. rapa subsp. Chinensis and B. rapa subsp. rapa). J App Bot Food Qual 79:168–174

    CAS  Google Scholar 

  • Lewis L, Fenwick GR (1987) Glucosinolate content of brassica vegetables: analysis of twenty-four cultivars of calabrese (green sprouting broccoli, Brassica oleracea L. var. botrytis subvar. cymosa Lam.). Food Chem 25:259–268, doi:10.1016/0308-8146(87)90012-4

    Article  CAS  Google Scholar 

  • Li SM, Schonhof I, Krumbein A, Li L, Stützel H, Schreiner M (2007) Glucosinolate concentration in turnip (Brassica rapa ssp. rapifera L.) roots as affected by nitrogen and sulfur supply. J Agric Food Chem 55:8452–8457, doi:10.1021/jf070816k

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Minotta G, Pinzauti S (1996) Effects of light and soil fertility on growth, leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings. For Ecol Manag 86:61–71, doi:10.1016/S0378-1127(96)03796-6

    Article  Google Scholar 

  • Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric 80:967–984, doi:10.1002/(SICI)1097-0010(20000515)80:7<967::AID-JSFA597>3.0.CO;2-V

    Article  CAS  Google Scholar 

  • Mithen R (2001) Glucosinolates—biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103, doi:10.1023/A:1013330819778

    Article  CAS  Google Scholar 

  • Radin JW (1990) Responses of transpiration and hydraulic conductance to root temperature in nitrogen- and phosphorus-deficient cotton seedlings. Plant Physiol 92:855–857

    Article  CAS  PubMed  Google Scholar 

  • Reichelt M, Brown PD, Schneider B, Oldham NJ, Stauber E, Tokuhisa J, Kliebenstein DJ, Mitchell-Olds T, Gershenzon J (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59:663–671, doi:10.1016/S0031-9422(02)00014-6

    Article  CAS  PubMed  Google Scholar 

  • Reinhard S, Martin P, Marschner H (1992) Interactions in the tripartite symbiosis of pea (Pisum sativum L.), Glomus and Rhizobium under non-limiting phosphorus supply. J Plant Physiol 141:7–11

    Google Scholar 

  • Reuter DJ, Robinson JB (1986) Plant analysis an interpretation manual, 2nd edn. Inkata, Sydney, pp 1–12

    Google Scholar 

  • Rice SA, Bazzaz FA (1989) Quantification of plasticity of plant traits in response to light intensity: comparing phenotypes at a common weight. Oecologia 78:502–507, doi:10.1007/BF00378741

    Article  Google Scholar 

  • Rosa E, Gomes MH (2001) Relationship between free amino acids and glucosinolates in primary and secondary inflorescences of 11 broccoloi (Brassica oleracea L var italica) cultivars grown in early and late seasons. J Sci Food Agric 82:61–64, doi:10.1002/jsfa.999

    Article  Google Scholar 

  • Rosa EAS, Rodrigues AS (2001) Total and individual glucosinolate content in 11 broccoli cultivars grown in early and late seasons. HortSci 36:56–59

    CAS  Google Scholar 

  • Ruan JY, Gerendas J, Hardter R, Sattelmacher B (2007) Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ann Bot (Lond) 99:301–310, doi:10.1093/aob/mcl258

    Article  CAS  Google Scholar 

  • Schonhof I, Blankenburg D, Muller S, Krumbein A (2007a) Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli. J Plant Nutr Soil Sci 170:65–72, doi:10.1002/jpln.200620639

    Article  CAS  Google Scholar 

  • Schonhof I, Kläring HP, Krumbein A, Claussen W, Schreiner M (2007b) Effect of temperature increase under low radiation conditions on phytochemicals and ascorbic acid in greenhouse grown broccoli. Agric Ecosyst Environ 119:103–111, doi:10.1016/j.agee.2006.06.018

    Article  CAS  Google Scholar 

  • Singh V, Pallaghy CK, Singh D (2006) Phosphorus nutrition and tolerance of cotton to water stress: II. Water relations, free and bound water and leaf expansion rate. Field Crops Res 96:199–206, doi:10.1016/j.fcr.2005.06.011

    Article  Google Scholar 

  • Wills RBH, Rangga A (1996) Determination of carotenoids in Chinese vegetable. Food Chem 56:451–455, doi:10.1016/0308-8146(95)00226-X

    Article  CAS  Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270, doi:10.1016/S1360-1385(02)02273-2

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Schonhof I, Krumbein A, Gutezeit B, Li L, Stützel H, Schreiner M (2008) Water supply and growing season influence glucosinolate concentration and composition in turnip root (Brassica rapa ssp. rapifera L.). J Plant Nutr Soil Sci 171:255–265, doi:10.1002/jpln.200700079

    Article  CAS  Google Scholar 

  • Zimmermann N, Krumbein A, Zhu ZJ, Gerendás J (2005) Influence of N and S supply on contents of glucosinolates and their precursors amino acids in bai cai (Brassica campestris L. ssp. chinensis). In: Li CJ et al (ed) Plant nutrition for food security, human health and environmental protection. Tsinghua University Press, Peking, pp 390–391

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by Sino-German Center for Science Promotion (Grant GZ 051/10 (154)) and National Natural Science Foundation of China (No. 30871718). The authors thank Shi Y Z for elements concentration measurement (Tea Research Institute of Chinese Academy of Agricultural Sciences and Key Laboratory for Tea Chemistry of The Ministry of Agriculture of China) and the Chinese Academy of Forestry for free amino acid analysis. We would like to acknowledge valuable suggestions by the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhujun Zhu.

Additional information

Responsible Editor: Ismail Cakmak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Zhu, Z. & Gerendás, J. Interactive effects of phosphorus supply and light intensity on glucosinolates in pakchoi (Brassica campestris L. ssp. chinensis var. communis). Plant Soil 323, 323–333 (2009). https://doi.org/10.1007/s11104-009-9940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9940-1

Keywords

Navigation