Skip to main content
Log in

Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

RNA-seq was used to analyze the transcriptional changes in sugar beet (Beta vulgaris L.) triggered by alkaline solution to elucidate the molecular mechanism underlying alkaline tolerance in sugar beet. Several differentially expressed genes related to stress tolerance were identified. Our results provide a valuable resource for the breeding of new germplasms with high alkaline tolerance.

Abstract

Alkalinity is a highly stressful environmental factor that limits plant growth and production. Sugar beet own the ability to acclimate to various abiotic stresses, especially salt and alkaline stress. Although substantial previous studies on response of sugar beet to saline stress has been conducted, the expressions of alkali-responsive genes in sugar beet have not been comprehensively investigated. In this study, we conducted transcriptome analysis of leaves in sugar beet seedlings treated with alkaline solutions for 0 day (control, C), 3 days (short-term alkaline treatment, ST) and 7 days (long-term alkaline treatment, LT). The clean reads were obtained and assembled into 25,507 unigenes. Among them, 975 and 383 differentially expressed genes (DEGs) were identified in the comparison groups ST_vs_C and LT_vs_C, respectively. Gene ontology (GO) analysis revealed that oxidation–reduction process and lipid metabolic process were the most enriched GO term among the DEGs in ST_vs_C and LT_vs_C, respectively. According to Kyoto Encyclopedia of Genes and Genomes pathway, carbon fixation in photosynthetic organisms pathway were significantly enriched under alkaline stress. Besides, expression level of genes encoding d-3-phosphoglycerate dehydrogenase 1, glutamyl-tRNA reductase 1, fatty acid hydroperoxide lyase, ethylene-insensitive protein 2, metal tolerance protein 11 and magnesium-chelatase subunit ChlI, etc., were significantly altered under alkaline stress. Additionally, among the DEGs, 136 were non-annotated genes and 24 occurred with differential alternative splicing. Our results provide a valuable resource on alkali-responsive genes and should benefit the improvement of alkaline stress tolerance in sugar beet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgement

This research was supported by National Natural Science Foundation of China (31671622) and Technical System of Sugar Industry of China (CARS-170201).

Author information

Authors and Affiliations

Authors

Contributions

CLZ, DL, PRW and CFL conceived the study. CLZ, YBW and CFL designed the sequence data sets. CLZ, and DL analyzed the data. CLZ, ZJG, LL, FFY and GHG drafted the manuscript. All the authors contributed to editing and revising the manuscript.

Corresponding author

Correspondence to Caifeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, C., Liu, D., Wu, P. et al. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. Plant Mol Biol 102, 645–657 (2020). https://doi.org/10.1007/s11103-020-00971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-00971-7

Keywords

Navigation