Skip to main content
Log in

The transcription factor SlSHINE3 modulates defense responses in tomato plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The cuticle plays an important role in plant interactions with pathogens and with their surroundings. The cuticle acts as both a physical barrier against physical stresses and pathogens and a chemical deterrent and activator of the plant defense response. Cuticle production in tomato plants is regulated by several transcription factors, including SlSHINE3, an ortholog of the Arabidopsis WIN/SHN3. Here we used a SlSHINE3-overexpressing (SlSHN3-OE) and silenced (Slshn3-RNAi) lines and a mutant in SlCYP86A69 (Slcyp86A69)—a direct target of SlSHN3—to analyze the roles of the leaf cuticle and cutin content and composition in the tomato plant’s defense response to the necrotrophic foliar pathogen Botrytis cinerea and the biotrophic bacterial pathogen Xanthomonas campestris pv. vesicatoria. We showed that SlSHN3, which is predominantly expressed in tomato fruit epidermis, also affects tomato leaf cuticle, as morphological alterations in the SlSHN3-OE leaf tissue resulted in shiny, stunted and permeable leaves. SlSHN3-OE leaves accumulated 38 % more cutin monomers than wild-type leaves, while Slshn3-RNAi and Slcyp86A69 plants showed a 40 and 70 % decrease in leaf cutin monomers, respectively. Overexpression of SlSHN3 resulted in resistance to B. cinerea infection and to X. campestris pv. vesicatoria, correlated with cuticle permeability and elevated expression of pathogenesis-related genes PR1a and AOS. Further analysis revealed that B. cinerea-infected Slshn3-RNAi plants are more sensitive to B. cinerea and produce more hydrogen peroxide than wild-type plants. Cutin monomer content and composition differed between SlSHN3-OE, Slcyp86A69, Slshn3-RNAi and wild-type plants, and cutin monomer extracted from SlSHN3-OE plants altered the expression of pathogenesis-related genes in wild-type plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Dominguez E, Wang Z, De Vos RC, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet 5:e1000777

    Article  PubMed  Google Scholar 

  • Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant cell 16:2463–2480

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Bajar A, Podila GK, Kolattukudy PE (1991) Identification of a fungal cutinase promoter that is inducible by a plant signal via a phosphorylated trans-acting factor. Proc Natl Acad Sci USA 88:8208–8212

    Article  PubMed  CAS  Google Scholar 

  • Ballester AR, Molthoff J, de Vos R, Hekkert B, Orzaez D, Fernandez-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152:71–84

    Article  PubMed  CAS  Google Scholar 

  • Bessire M, Chassot C, Jacquat AC, Humphry M, Borel S, Petetot JM, Metraux JP, Nawrath C (2007) A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO 26:2158–2168

    Article  CAS  Google Scholar 

  • Bonaventure G, Beisson F, Ohlrogge J, Pollard M (2004) Analysis of the aliphatic monomer composition of polyesters associated with Arabidopsis epidermis: occurrence of octadeca-cis-6, cis-9-diene-1,18-dioate as the major component. Plant J 40:920–930

    Article  PubMed  CAS  Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711

    Article  PubMed  CAS  Google Scholar 

  • Catala C, Howe KJ, Hucko S, Rose JK, Thannhauser TW (2011) Towards characterization of the glycoproteome of tomato (Solanum lycopersicum) fruit using Concanavalin A lectin affinity chromatography and LC-MALDI-MS/MS analysis. Proteomics 11:1530–1544

    Article  PubMed  CAS  Google Scholar 

  • Chassot C, Nawrath C, Metraux JP (2007) Cuticular defects lead to full immunity to a major plant pathogen. Plant J 49:972–980

    Article  PubMed  CAS  Google Scholar 

  • Choquer M, Fournier E, Kunz C, Levis C, Pradier J-M, Simon A, Viaud M (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277:1–10

    Article  PubMed  CAS  Google Scholar 

  • Fauth M, Merten A, Hahn MG, Jeblick W, Kauss H (1996) Competence for elicitation of H2O2 in hypocotyls of cucumber is induced by breaching the cuticle and Is enhanced by salicylic acid. Plant Physiol 110:347–354

    PubMed  CAS  Google Scholar 

  • Fauth M, Schweizer P, Buchala A, Markstadter C, Riederer M, Kato T, Kauss H (1998) Cutin monomers and surface wax constituents elicit H2O2 in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2 elicitors. Plant Physiol 117:1373–1380

    Article  PubMed  CAS  Google Scholar 

  • Franke R, Briesen I, Wojciechowski T, Faust A, Yephremov A, Nawrath C, Schreiber L (2005) Apoplastic polyesters in Arabidopsis surface tissues–a typical suberin and a particular cutin. Phytochemistry 66:2643–2658

    Article  PubMed  CAS  Google Scholar 

  • Gibly A, Bonshtien A, Balaji V, Debbie P, Martin GB, Sessa G (2004) Identification and expression profiling of tomato genes differentially regulated during a resistance response to Xanthomonas campestris pv. vesicatoria. Mol Plant Microbe Interact 17:1212–1222

    Article  PubMed  CAS  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  PubMed  CAS  Google Scholar 

  • Hovav R, Chehanovsky N, Moy M, Jetter R, Schaffer AA (2007) The identification of a gene (Cwp1), silenced during Solanum evolution, which causes cuticle microfissuring and dehydration when expressed in tomato fruit. Plant J 52:627–639

    Article  PubMed  CAS  Google Scholar 

  • Isaacson T, Kosma DK, Matas AJ, Buda GJ, He Y, Yu B, Pravitasari A, Batteas JD, Stark RE, Jenks MA, Rose JK (2009) Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant J 60:363–377

    Article  PubMed  CAS  Google Scholar 

  • Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Hofte H, Pauly M, Riechmann JL, Broun P (2007) The transcription factor WIN1/SHN1 regulates Cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294

    Article  PubMed  CAS  Google Scholar 

  • Kauss H, Fauth M, Merten A, Jeblick W (1999) Cucumber hypocotyls respond to cutin monomers via both an inducible and a constitutive H(2)O(2)-generating system. Plant Physiol 120:1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Park JH, Kim MC, Cho SH (2008) Cutin monomer induces expression of the rice OsLTP5 lipid transfer protein gene. J Plant Physiol 165:345–349

    Article  PubMed  CAS  Google Scholar 

  • Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000

    Article  PubMed  CAS  Google Scholar 

  • Kolattukudy PE (2001) Polyesters in higher plants. Adv Biochem Eng Biotechnol 71:1–49

    PubMed  CAS  Google Scholar 

  • Leide J, Hildebrandt U, Reussing K, Riederer M, Vogg G (2007) The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: effects of a deficiency in a beta-ketoacyl-coenzyme A synthase (LeCER6). Plant Physiol 144:1667–1679

    Article  PubMed  CAS  Google Scholar 

  • Leide J, Hildebrandt U, Vogg G, Riederer M (2011) The positional sterile (ps) mutation affects cuticular transpiration and wax biosynthesis of tomato fruits. Plant Physiol 168:871–877

    Article  CAS  Google Scholar 

  • L’Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E, Balet F, Schoonbeek HJ, Hess S, Mir R, Leon J, Lamotte O, Metraux JP (2011) A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog 7:e1002148

    Article  PubMed  Google Scholar 

  • Lin TS, Kolattukudy PE (1978) Induction of a biopolyester hydrolase (cutinase) by low levels of cutin monomers in Fusarium solani f.sp. pisi. J Bacteriol 133:942–951

    PubMed  CAS  Google Scholar 

  • Mang HG, Laluk KA, Parsons EP, Kosma DK, Cooper BR, Park HC, AbuQamar S, Boccongelli C, Miyazaki S, Consiglio F, Chilosi G, Bohnert HJ, Bressan RA, Mengiste T, Jenks MA (2009) The arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs. Plant Physiol 151:290–305

    Article  PubMed  CAS  Google Scholar 

  • Martin JT (1964) Role of cuticle in the defense against plant disease. Ann Rev Phytopathol 2:81–100

    Article  Google Scholar 

  • Muller C, Riederer M (2005) Plant surface properties in chemical ecology. J Chem Ecol 31:2621–2651

    Article  PubMed  Google Scholar 

  • Nawrath C (2006) Unraveling the complex network of cuticular structure and function. Curr Opin Plant Biol 9:281–287

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Suh MC, Kim TH, Kim MC, Cho SH (2008) Expression of glycine-rich protein genes, AtGRP5 and AtGRP23, induced by the cutin monomer 16-hydroxypalmitic acid in Arabidopsis thaliana. Plant Physiol Biochem 46:1015–1018

    Article  PubMed  CAS  Google Scholar 

  • Rolke Y, Liu S, Quidde T, Williamson B, Schouten A, Weltring KM, Siewers V, Tenberge KB, Tudzynski B, Tudzynski P (2004) Functional analysis of H(2)O(2)-generating systems in Botrytis cinerea: the major Cu–Zn–superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Molecular plant pathology 5:17–27

    Article  PubMed  CAS  Google Scholar 

  • Saladie M, Matas AJ, Isaacson T, Jenks MA, Goodwin SM, Niklas KJ, Xiaolin R, Labavitch JM, Shackel KA, Fernie AR, Lytovchenko A, O’Neill MA, Watkins CB, Rose JK (2007) A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol 144:1012–1028

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, Tenberge KB, Vermeer J, Stewart J, Wagemakers L, Williamson B, van Kan JA (2002) Functional analysis of an extracellular catalase of Botrytis cinerea. Mol plant pathol 3:227–238

    Article  PubMed  CAS  Google Scholar 

  • Schweizer P, Jeanguenat A, Whitacre D, Metraux JP, Mosinger E (1996) Induction of resistance in barley against Erysiphe graminis f.sp. hordei by free cutin monomers. Physiolo Mol Plant Pathol 49:103–120

    Article  CAS  Google Scholar 

  • Shi JX, Malitsky S, De Oliveira S, Branigan C, Franke RB, Schreiber L, Aharoni A (2011) SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs. PLoS Genet 7:e1001388

    Article  PubMed  CAS  Google Scholar 

  • Shi JX, Adato A, Alkan N, He Y, Lashbrooke J, Matas AJ, Meir S, Malitsky S, Isaacson T, Prusky D, Leshkowitz D, Schreiber L, Granell AR, Widemann E, Grausem B, Pinot F, Rose JK, Rogachev I, Rothan C, Aharoni A (2012) The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning. New Phytol 197:468–480

    Article  PubMed  Google Scholar 

  • Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, Levy AA, Riederer M (2004) Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid beta-ketoacyl-CoA synthase. J Exp Bot 55:1401–1410

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Guhling O, Yao R, Li F, Yeats TH, Rose JK, Jetter R (2011) Two oxidosqualene cyclases responsible for biosynthesis of tomato fruit cuticular triterpenoids. Plant Physiol 155:540–552

    Article  PubMed  CAS  Google Scholar 

  • Woloshuk CP, Kolattukudy PE (1986) Mechanism by which contact with plant cuticle triggers cutinase gene expression in the spores of Fusarium solani f. sp. pisi. Proc Natl Acad Sci USA 83:1704–1708

    Article  PubMed  CAS  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Verma P, Lees G (1992) The role of cuticle and epidermal cell wall in resistance of rapeseed and mustard to Rhizoctonia solani. Plant Soil 142:315–321

    Article  Google Scholar 

  • Yeats TH, Howe KJ, Matas AJ, Buda GJ, Thannhauser TW, Rose JK (2010) Mining the surface proteome of tomato (Solanum lycopersicum) fruit for proteins associated with cuticle biogenesis. J Exp Bot 61:3759–3771

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in M.L.’s laboratory was partially supported by BARD. A.A. is the incumbent of the Adolpho and Evelyn Blum Career Development Chair of Cancer Research. Work in A.A.’s laboratory was supported by the Israel Science Foundation (ISF) and the European Research Council (ERC) SAMIT project. Work in S.B.'s laboratory was supported by the ISF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maggie Levy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

11103_2013_117_MOESM2_ESM.tiff

Supplementary material 2 Bacterial disease symptoms on SlSHN3-OE (SHN3-OE) and wild-type (WT) plants. Bacterial infection-induced necrotic spots can be clearly seen on shoot internodes of infected WT, but not SHN3-OE plants (TIFF 2347 kb)

11103_2013_117_MOESM3_ESM.tiff

Supplementary material 3 GC/MS analysis of cutin composition in SlSHN3-OE (SHN3-OE), Slcyp86A69 and Slshn3-RNAi (RNAi) plants. Fold change of individual cutin monomers in SlSHN3-OE, Slcyp86A69 (cyp86A69) and Slshn3-RNAi as compared with wild-type (WT) plants (TIFF 324 kb)

11103_2013_117_MOESM4_ESM.tiff

Supplementary material 4 Effect of cutin monomers on in vitro B. cinerea spore germination. Percentage of B. cinerea spore germination (a) and colony diameter (b) on PDA plates supplemented with SlSHN3-OE (SHN3-OE), Slcyp86A69 (cyp86A69), SlSHN3-RNAi (RNAi) or wild-type (WT) cutin monomers (TIFF 273 kb)

11103_2013_117_MOESM5_ESM.tiff

Supplementary material 5 Effect of cutin monomers on X. campestris pv. vesicatoria—disease symptoms. Wild-type (WT) leaves were inoculated with X. campestris pv. vesicatoria supplemented with 0.01 μg/μl cutin monomers extracted from either SlSHN3-OE or WT plants, and WT plants inoculated with X. campestris pv. vesicatoria only served as the control. (a) Quantitative analysis of symptoms as reflected by spot number on different shoot internodes. Values are presented as mean ± SE (n = 10). (b) Mean ± SE (n = 6) of log CFU per gram tissue (TIFF 271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buxdorf, K., Rubinsky, G., Barda, O. et al. The transcription factor SlSHINE3 modulates defense responses in tomato plants. Plant Mol Biol 84, 37–47 (2014). https://doi.org/10.1007/s11103-013-0117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0117-1

Keywords

Navigation