Skip to main content
Log in

From models to ornamentals: how is flower senescence regulated?

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Floral senescence involves an ordered set of events coordinated at the plant, flower, organ and cellular level. This review assesses our current understanding of the input signals, signal transduction and cellular processes that regulate petal senescence and cell death. In many species a visible sign of petal senescence is wilting. This is accompanied by remobilization of nutrients from the flower to the developing ovary or to other parts of the plant. In other species, petals abscise while still turgid. Coordinating signals for floral senescence also vary across species. In some species ethylene acts as a central regulator, in others floral senescence is ethylene insensitive and other growth regulators are implicated. Due to the variability in this coordination and sequence of events across species, identifying suitable models to study petal senescence has been challenging, and the best candidates are reviewed. Transcriptomic studies provide an overview of the MAP kinases and transcription factors that are activated during petal senescence in several species including Arabidopsis. Our understanding of downstream regulators such as autophagy genes and proteases is also improving. This gives us insights into possible signalling cascades that regulate initiation of senescence and coordination of cell death processes. It also identifies the gaps in our knowledge such as the role of microRNAs. Finally future prospects for using all this information from model to non-model species to extend vase life in ornamental species is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arrom L, Munné-Bosch S (2010) Tocopherol composition in flower organs of Lilium and its variations during natural and artificial senescence. Plant Sci 179:289–295

    Article  CAS  Google Scholar 

  • Arrom L, Munné-Bosch S (2012a) Sucrose accelerates flower opening and delays senescence through a hormonal effect in cut lily flowers. Science 188–189:41–47

    Google Scholar 

  • Arrom L, Munné-Bosch S (2012b) Hormonal changes during flower development in floral tissues of Lilium. Planta 236:343–354

    Article  PubMed  CAS  Google Scholar 

  • Azad AK, Ishikawa T, Sawa Y, Shibata H (2008) Intracellular energy depletion triggers programmed cell death during petal senescence in tulip. J Exp Bot 59:2085–2095

    Article  PubMed  CAS  Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318

    Article  PubMed  CAS  Google Scholar 

  • Battelli R, Lombardi L, Rogers HJ, Picciarelli P, Lorenzi R, Ceccarelli N (2011) Changes in ultrastructure, protease and caspase-like activities during flower senescence in Lilium longiflorum. Plant Sci 180:716–725

    Article  PubMed  CAS  Google Scholar 

  • Bonneau L, Ge Y, Drury GE, Gallois P (2008) What happened to plant caspases? J Exp Bot 59:491–499

    Article  PubMed  CAS  Google Scholar 

  • Borohov A, Tirosh T, Halevy AH (1976) Abscisic acid content of senescing petals on cut rose flowers as affected by sucrose and water stress. Plant Physiol 58:175–178

    Article  PubMed  CAS  Google Scholar 

  • Breeze E, Wagstaff C, Harrison E, Bramke I, Rogers HJ, Stead AD, Thomas B, Buchanan-Wollaston V (2004) Gene expression patterns to define stages of post-harvest senescence in Alstroemeria petals. Plant Biotechnol J 2:155–168

    Article  PubMed  CAS  Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y, Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  PubMed  CAS  Google Scholar 

  • Calderón Villalobos LIA, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, Zheng N, Napier R, Kepinski S, Estelle M (2012) A combinatorial TIR1/AFB–Aux/IAAco-receptor system for differential sensing of auxin. Nature Chem Biol 8:477–485

    Article  CAS  Google Scholar 

  • Chanasut U, Rogers HJ, Leverentz MK, Griffiths G, Thomas B, Wagstaff C, Stead AD (2003) Increasing flower longevity in Alstroemeria. Postharvest Biol Technol 29:325–333

    Article  CAS  Google Scholar 

  • Chandler S, Tanaka Y (2007) Genetic modification in floriculture. CRC Crit Rev Plant Sci 26:169–197

    Article  CAS  Google Scholar 

  • Chang H, Jones ML, Banowetz GM, Clark DG (2003) Overproduction of cytokinins in petunia flowers transformed with PSAG12: IPT delays corolla senescence. Plant Physiol 132:2174–2183

    Article  PubMed  CAS  Google Scholar 

  • Chen J-C, Jiang C-Z, Gookin TE, Hunter DA, Clark DG, Reid MS (2004) Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant Mol Biol 55:521–530

    Article  PubMed  CAS  Google Scholar 

  • Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HI, Yang CH (2011a) The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant J 68:168–185

    Article  PubMed  CAS  Google Scholar 

  • Chen MK, Lee PF, Yang CH (2011b) Delay of flower senescence and abscission in Arabidopsis transformed with an FOREVER YOUNG FLOWER homolog from Oncidium orchid. Plant Signal Behav 6:1841–1843

    Article  PubMed  CAS  Google Scholar 

  • Cho SK, Larue CT, Chevalier D, Wang H, Jinn T-L, Zhang S, Walker JC (2008) Regulation of floral organ abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:15629–15634

    Article  PubMed  CAS  Google Scholar 

  • Coll NS, Vercammen D, Smidler A, Clover C, Van Breusegem F, Dangl JL, Epple P (2010) Arabidopsis Type I metacaspases control cell death. Science 330:1393–1397

    Article  PubMed  CAS  Google Scholar 

  • Conner AJ, Albert NW, Deroles SC (2009) Transformation and regeneration of petunia. In: Gerats T, Strommer J (eds) Petunia evolutionary, developmental and physiological genetics. Springer, New York, pp 301–324

    Google Scholar 

  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442

    Article  PubMed  CAS  Google Scholar 

  • Eason JR, Ryan DJ, Pinkney TT, O’Donoghu EM (2002) Programmed cell death during flower senescence: isolation and characterization of cysteine proteinases from Sandersonia aurantiaca. Funct Plant Biol 29:1055–1064

    Article  CAS  Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8:2–9

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy I, Sherif S, Mila I, Bouzayen M, Jayasankar S (2009) Molecular characterization of seven genes encoding ethylene responsive transcriptional factors during plum fruit development and ripening. J Exp Bot 60:907–922

    Article  PubMed  CAS  Google Scholar 

  • Fiil BK, Petersen K, Petersen M, Mundy J (2009) Gene regulation by MAP kinase cascades. Curr Opin Plant Biol 12:615–621

    Article  PubMed  CAS  Google Scholar 

  • Graham LE, Schippers JHM, Dijkwel PP, Wagstaff C (2012) Ethylene and senescence processes. Annu Plant Rev 44:305–341

    Article  CAS  Google Scholar 

  • Gubrium EK, Clevenger DJ, Clark DG, Barrett JE, Nell TA (2000) Reproduction and horticultural performance of transgenic ethylene-insensitive petunias. J Am Soc Hortic Sci 125:277–281

    Google Scholar 

  • Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo J (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21:2568–2569

    Article  PubMed  CAS  Google Scholar 

  • Hammond JP, Broadley MR, Craigon DJ, Higgins J, Emmerson ZF, Townsend HJ, White PJ, May ST (2005) Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species. Plant Method 1:10

    Article  Google Scholar 

  • Hay A, Tsiantis M (2009) A KNOX family TALE. Curr Opin Plant Biol 12:593–598

    Article  PubMed  CAS  Google Scholar 

  • Hoeberichts FA, van Doorn WG, Vorst O, Hall RD, van Wordragen MF (2007) Sucrose prevents up-regulation of senescence-associated genes in carnation petals. J Exp Bot 58:2873–2885

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra FA, Weges R (1986) Lack of control by early pistillate ethylene of the accelerated wilting of Petunia hybrida flowers. Plant Physiol 80:403–408

    Article  PubMed  CAS  Google Scholar 

  • Hunter DA, Steele BC, Reid MS (2002) Identification of genes associated with perianth senescence in daffodil (Narcissus pseudonarcissus L. ‘Dutch Master’). Plant Sci 163:13–21

    Article  CAS  Google Scholar 

  • Hunter DA, Ferrante A, Vernieri P, Reid MS (2004a) Role of abscisic acid in perianth senescence of daffodil (Narcissus pseudonarcissus ‘Dutch Master’). Physiol Plant 121:313–321

    Article  PubMed  CAS  Google Scholar 

  • Hunter DA, Yi MF, Xu XJ, Reid MS (2004b) Role of ethylene in perianth senescence of daffodil (Narcissus pseudonarcissus L. ‘Dutch Master’). Postharvest Biol Technol 32:269–280

    Article  CAS  Google Scholar 

  • Iordachescu M, Verlinden S (2005) Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure. J Exp Bot 56:2011–2018

    Article  PubMed  CAS  Google Scholar 

  • Jones ML (2004) Changes in gene expression during senescence. In: Nooden LD (ed) Plant cell death processes. Elsevier, Amsterdam, pp 51–71

    Chapter  Google Scholar 

  • Jones ML, Stead AD, Clark DG (2009) Petunia flower senescence. In: Gerats T, Strommer J (eds) Petunia: evolutionary, developmental and physiological genetics. Springer, New York, pp 301–324

    Google Scholar 

  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving mir164 in Arabidopsis. Science 323:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Li J, Wang H, Fu Z, Liu J, Yu Y (2011) Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. J Exp Bot 62:825–840

    Article  PubMed  CAS  Google Scholar 

  • Ma N, Tan H, Liu X, Xue J, Li Y, Gao J (2006) Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv Samantha. J Exp Bot 57:2763–2773

    Article  PubMed  CAS  Google Scholar 

  • MAPK Group (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  Google Scholar 

  • Mayak S, Halevy AH (1970) Cytokinin activity in rose petals and its relation to senescence. Plant Physiol 46:497–499

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Laun TM, Smykowski A, Zentgraf U (2007) Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol Biol 65:63–76

    Article  PubMed  CAS  Google Scholar 

  • Mor Y, Spiegelstein H, Halevy AH (1983) Inhibition of ethylene biosynthesis in carnation petals by cytokinin. Plant Physiol 71:541–546

    Article  PubMed  CAS  Google Scholar 

  • Müller R, Stummann BM, Serek M (2000) Characterization of an ethylene receptor family with differential expression in rose (Rosa hybrida L.) flowers. Plant Cell Rep 19:1232–1239. doi:10.1007/s002990000251

    Article  Google Scholar 

  • Müller R, Owen CA, Xue Z-T, Welander M, Stummann BM (2002) Characterization of two CTR-like protein kinases in Rosa hybrida and their expression during flower senescence and in response to ethylene. J Exp Bot 53:1223–1225

    Article  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  PubMed  CAS  Google Scholar 

  • Pak C, van Doorn WG (2005) Delay of Iris flower senescence by protease inhibitors. New Phytol 165:473–480

    Article  PubMed  CAS  Google Scholar 

  • Panavas T, Walker ER, Rubinstein B (1998) Possible role of abscisic acid in senescence of daylily petals. J Exp Bot 49:1987–1997

    CAS  Google Scholar 

  • Picchioni GA, Mackay WA, Valenzuela-Vázquez M (2007) Correlative supply and demand functions in Lupinus havardii: a forgotten side of cut flower physiology? J Am Soc Hortic Sci 132:102–111

    CAS  Google Scholar 

  • Price AM, Aros Orellana DF, Stevens R, Acock R, Buchanan-Wollaston V, Stead AD, Rogers HJ (2008) A comparison of leaf and petal senescence in wallflowers (Erysimum linifolium) reveals common and distinct patterns of gene expression and physiology. Plant Physiol 147:1898–1912

    Article  PubMed  CAS  Google Scholar 

  • Rogers HJ (2006) Programmed cell death in floral organs: how and why do flowers die? Ann Bot 97:309–315

    Article  PubMed  CAS  Google Scholar 

  • Rogers HJ (2012) Is there a important role for reactive oxygen species and redox regulation during floral senescence? Plant, Cell Environ 35:217–233

    Article  CAS  Google Scholar 

  • Rogers HJ, Stead AD (2011) Petal abscission: falling to their death or cast out to die? In: Yaish MW (ed) The flowering process and its control in plants: gene expression and hormone interaction. Research Signpost, Kerala, pp 229–258

    Google Scholar 

  • Rojo E, Martín R, Carter C, Zouhar J, Pan S, Plotnikova J, Jin H, Paneque M, Sánchez-Serrano JJ, Baker B, Ausubel FM, Raikhel NV (2004) VPE gamma exhibits a caspase-like activity that contributes to defense against pathogens. Curr Biol 14:1897–1906

    Article  PubMed  CAS  Google Scholar 

  • Ronen M, Mayak S (1981) Interrelationship between abscisic acid and ethylene in the control of senescence processes in carnation flowers. J Exp Bot 32:759–765. doi:10.1093/jxb/32.4.759

    Article  CAS  Google Scholar 

  • Sanmartín M, Jaroszewski L, Raikhel NV, Rojo E (2005) Caspases, regulating death since the origin of life? Plant Physiol 137:841–847

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Simpson D, Gietl C (1999) Programmed cell death in castor bean endoserm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Proc Natl Acad Sci USA USA 96:14159–14164

    Article  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann J (2005) A gene expression map of Arabidopsis development. Nat Genet 37:501–506

    Article  PubMed  CAS  Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:e230

    Article  PubMed  CAS  Google Scholar 

  • Seglie L, Martina K, Devecchi M, Roggero C, Trotta F, Scariot V (2011) The effects of 1-MCP in cyclodextrin-based nanosponges to improve the vase life of Dianthus caryophyllus cut flowers. Postharvest Biol Technol 59:200–205

    Article  CAS  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16:656–665. doi:10.1016/j.tplants.2011.08.006

    Article  PubMed  CAS  Google Scholar 

  • Shibuya K, Nagata M, Tanikawa N, Yoshioka T, Hashiba T, Satoh S (2002) Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J Exp Bot 53:399–406

    Article  PubMed  CAS  Google Scholar 

  • Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, Ecker JR, Klee HJ, Clark DG (2004) The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol 136:2900–2912

    Article  PubMed  CAS  Google Scholar 

  • Shibuya K, Yamada T, Ichimura K (2009a) Autophagy regulates progression of programmed cell death during petal senescence in Japanese morning glory. Autophagy 5:546–547

    Article  PubMed  CAS  Google Scholar 

  • Shibuya K, Yamada T, Suzuki T, Shimizu K, Ichimura K (2009b) InPSR26, a putative membrane protein, regulates programmed cell death during petal senescence in Japanese morning glory. Plant Physiol 149:816–824

    Article  PubMed  CAS  Google Scholar 

  • Shvarts M, Weiss D, Borochov A (1997) Temperature effects on growth, pigmentation and post-harvest longevity of petunia flowers. Sci Hortic 69:217–227

    Article  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabídopsis. Plant Cell 2:755–767

    PubMed  CAS  Google Scholar 

  • Stead AD, van Doorn WG (1994) Strategies of flower senescence-a review. In: Scott RJ, Stead AD (eds) Molecular and cellular aspects of plant reproduction. Cambridge University Press, Cambridge, pp 215–238

    Chapter  Google Scholar 

  • Taverner EA, Letham DS, Wang J, Cornish E (2000) Inhibition of carnation petal inrolling by growth retardants and cytokinins. Aus J Plant Physiol 27:357–362

    Article  CAS  Google Scholar 

  • ten Have A, Woltering EJ (1997) Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence. Plant Mol Biol 34:89–97

    Article  PubMed  Google Scholar 

  • Thomas H, Ougham HJ, Wagstaff C, Stead AD (2003) Defining senescence and death. J Exp Bot 54:1127–1132

    Article  PubMed  CAS  Google Scholar 

  • Tieman DM, Ciardi JA, Taylor MG, Klee HJ (2001) Members of the tomato LeEIL gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J 26:47–58

    Article  PubMed  CAS  Google Scholar 

  • To JPC, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85–92

    Article  PubMed  CAS  Google Scholar 

  • Trick M, Cheung F, Drou N, Fraser F, Lobenhofer E K, Hurban P, Magusin A, Town CD and Bancroft I (2009) A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. BMC Plant Biol: 50

  • Trivellini A, Ferrante A, Vernieri P, Serra G (2011) Effects of abscisic acid on ethylene biosynthesis andperception in Hibiscus rosa-sinensis L. flower development. J Exp Bot 62:5437–5452

    Article  PubMed  CAS  Google Scholar 

  • Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV (2011) Metacaspases. Cell Death Diff 18:1279–1288

    Article  CAS  Google Scholar 

  • Valpuesta V, Lange NE, Guerrero C, Reid MS (1995) Upregulation of a cysteine protease accompanies the ethylene-insensitive senescence of daylily (Hemerocallis) flowers. Plant Mol Biol 28:575–582

    Article  PubMed  CAS  Google Scholar 

  • van Doorn WG (2011) Classes of programmed cell death in plants, compared to those in animals. J Exp Bot 62:4749–4761

    Article  PubMed  CAS  Google Scholar 

  • van Doorn WG, Woltering EJ (2004) Senescence and programmed cell death: substance or semantics? J Exp Bot 55:2147–2153

    Article  PubMed  Google Scholar 

  • van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    Article  PubMed  CAS  Google Scholar 

  • van Doorn WG, Woltering EJ (2008) Physiology and molecular biology of petal senescence. J Exp Bot 59:453–480

    Article  PubMed  CAS  Google Scholar 

  • van Doorn WG, Balk PA, van Houwelingen AM, Hoeberichts FA, Hall RD, Vorst O, van der Schoot C, van Wordragen MF (2003) Gene expression during anthesis and senescence in Iris flowers. Plant Mol Biol 53:845–863

    Article  PubMed  Google Scholar 

  • van Staden J (1995) Hormonal control of carnation flower senescence. Acta Hortic 405:232–239

    Google Scholar 

  • van Staden J, Dimalla GG (1980) The effect of silver thiosulphate preservative on the physiology of cut carnations. II. Influence on endogenous cytokinin. Z Pflanzenphysiol 99:19–26

    Google Scholar 

  • van Staden J, Featonby-Smith BC, Mayak S, Spiegelstein H, Halevy AH (1987) Cytokinins in cut carnation flowers. II. Relation between endogenous ethylene and cytokinin levels in the petals. Plant Growth Regul 5:75–86

    Article  Google Scholar 

  • Vardi Y, Mayak S (1989) Involvement of abscisic acid during water stress and recovery in petunia flowers. Acta Hortic 261:107–112

    Google Scholar 

  • Verlinden S (2003) Changes in mineral concentrations in petunia corollas during development and senescence. Hortic Sci 38:71–74

    CAS  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  PubMed  CAS  Google Scholar 

  • Wagstaff C, Leverentz MK, Griffiths G, Thomas B, Chanasut U, Stead AD, Rogers HJ (2002) Protein degradation during senescence of Alstroemeria petals. J Exp Bot 53:233–240

    Article  PubMed  CAS  Google Scholar 

  • Wagstaff C, Malcolm P, Rafiq A, Leverentz M, Griffiths G, Thomas B, Stead A, Rogers HJ (2003) Programmed cell death (PCD) processes begin extremely early in Alstroemeria petal senescence. New Phytol 160:49–59

    Article  CAS  Google Scholar 

  • Wagstaff C, Yang TJW, Stead AD, Buchanan-Wollaston V, Roberts JA (2009) A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Plant J 57:690–705

    Article  PubMed  CAS  Google Scholar 

  • Wagstaff C, Bramke I, Breeze E, Thornber S, Harrison L, Thomas B, Buchanan-Wollaston V, Stead AD, Rogers HJ (2010) A unique group of genes respond to cold drought stress in cut Alstroemeria flowers whereas ambient drought stress accelerates developmental expression patterns. J Exp Bot 61:2905–2921

    Article  PubMed  CAS  Google Scholar 

  • Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, Klee HJ (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15:444–447

    Article  PubMed  CAS  Google Scholar 

  • Woltering EJ, van Doorn WG (1988) Role of ethylene and senescence of petals: morphological and taxonomical relationships. J Exp Bot 39:1605–1616

    Article  CAS  Google Scholar 

  • Woodson WR, Lawton KA (1988) Ethylene-induced gene expression in carnation petals. Relationship to autocatalytic ethylene production and senescence. Plant Physiol 87:498–503

    Article  PubMed  CAS  Google Scholar 

  • Wulster G, Sacalis J, Janes HW (1982) Senescence in isolated carnation petals effects of indoleacetic acid and inhibitors of protein synthesis. Plant Physiol 70:1039–1043

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Gookin T, Jiang C-Z, Reid M (2007a) Genes associated with opening and senescence of Mirabilis jalapa flowers. J Exp Bot 58:2193–2201

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Jiang C-Z, Donnelly L, Reid MS (2007b) Functional analysis of a RING domain ankyrin repeat protein that is highly expressed during flower senescence. J Exp Bot 58:3623–3630

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, van Ichimura K, Doorn WG (2007) Relationship between petal abscission and programmed cell death in Prunus yedoensis and Delphinium. Planta 226:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Ichimura K, Kanekatsu M, van Doorn WG (2009) Homologues of genes associated with programmed cell death in animal cells are differentially expressed during senescence of Ipomoea nil petals. Plant Cell Physiol 50:610–625

    Article  PubMed  CAS  Google Scholar 

  • Yang TF, Gonzalez-Caranza ZH, Maunders MJ, Roberts JA (2008) Ethylene and the regulation of senescence processes in transgenic Nicotiana sylvestris plants. Ann Bot 101:301–310

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Allan AC, Chen K, Ferguson IB (2010) Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol 153:1280–1292

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279

    Article  PubMed  CAS  Google Scholar 

  • Zaccai M, Jia G, Chen X, Genis O, Feibin D, Gesua R (2007) Regeneration and transformation system in Mirabilis jalapa. Sci Hortic 111:304–309

    Article  CAS  Google Scholar 

  • Zenoni S, D’Agostino N, Tornielli GB, Quattrocchio F, Chiusano ML, Koes R, Zethof J, Guzzo F, Delledonne M, Frusciante L, Gerats T, Pezzotti M (2011) Revealing impaired pathways in the an11 mutant by high-throughput characterization of Petunia axillaris and Petunia inflata transcriptomes. Plant J 68:11–27

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Cai Z, Guo Y, Gan S (2009) An Arabidopsis mitogen-activated protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence. Plant Physiol 150:167–177

    Article  PubMed  CAS  Google Scholar 

  • Zonneveld BJM, Leitch IJ, Bennett MD (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann Bot 96:229–244

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilary J. Rogers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, H.J. From models to ornamentals: how is flower senescence regulated?. Plant Mol Biol 82, 563–574 (2013). https://doi.org/10.1007/s11103-012-9968-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9968-0

Keywords

Navigation