Skip to main content
Log in

DNA barcode ITS2 coupled with high resolution melting (HRM) analysis for taxonomic identification of Sideritis species growing in Greece

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Identification of genotypes in Sideritis is complicated owing to the morphological similarity and common occurrence of natural hybridisation within Sideritis species. Species- and genotype-specific DNA markers are very useful for plant identification, breeding and preservation programs. Herein, a real-time polymerase chain reaction (PCR) of ITS2 barcode region coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on seven Sideritis species growing in Greece. The HRM assay developed in this study is a rapid and straightforward method for the identification and discrimination of the investigated Sideritis species. This assay is simple compared to other genotyping methods as it does not require DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of Sideritis species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aligiannis N, Kalpoutzakis E, Chinou IB, Mitakou S, Gikas E, Tsarbopoulos A (2001) Composition and antimicrobial activity of the essential oils of five taxa of Sideritis from Greece. J Agric Food Chem 49:811–815

    Article  CAS  PubMed  Google Scholar 

  2. Aslan İ, Kılıç T, Gören A, Topçu G (2006) Toxicity of acetone extract of Sideritis trojana and 7-epicandicandiol, 7-epicandicandiol diacetate and 18-acetylsideroxol against stored pests Acanthoscelides obtectus (Say), Sitophilus granarius (L.) and Ephestia kuehniella (Zell.). Ind Crops Prod 23:171–176

    Article  CAS  Google Scholar 

  3. Güvenç A, Houghton PJ, Duman H, Coşkun M, Şahin P (2005) Antioxidant activity studies on selected Sideritis species native to Turkey. Pharm Biol 43:173–177

    Article  Google Scholar 

  4. González-Burgos E, Gómez-Serranillos MP, Palomino OM, Carretero ME (2009) Aspectos botánicos y farmacológicos del género Sideritis. Rev. Fitoter 9:133–145

    Google Scholar 

  5. Font Quer P (1993) Plantas medicinales: el dioscórides renovado. Plantas medicinales: el dioscórides renovado 2

  6. Bojović D, Janković S, Potpara Z, Tadić V (2011) Summary of the phytochemical research performed to date on Sideritis species. Serbian J Exp Clin Res 12:109–122

    Article  Google Scholar 

  7. Armata M, Gabrieli C, Termentzi A, Zervou M, Kokkalou E (2008) Constituents of Sideritis syriaca ssp. syriaca (Lamiaceae) and their antioxidant activity. Food Chem 111:179–186

    Article  CAS  Google Scholar 

  8. Gabrieli CN, Kefalas PG, Kokkalou EL (2005) Antioxidant activity of flavonoids from Sideritis raeseri. J Ethnopharmacol 96:423–428

    Article  CAS  PubMed  Google Scholar 

  9. Tsaknis J, Lalas S (2005) Extraction and identification of natural antioxidant from Sideritis euboea (mountain tea). J Agric Food Chem 53:6375–6381

    Article  CAS  PubMed  Google Scholar 

  10. Knörle R (2012) Extracts of Sideritis scardica as triple monoamine reuptake inhibitors. J Neural Transm 119:1477–1482

    Article  PubMed  Google Scholar 

  11. Vasilopoulou CG, Kontogianni VG, Linardaki ZI, Iatrou G, Lamari FN, Nerantzaki AA, Gerothanassis IP, Tzakos AG, Margarity M (2013) Phytochemical composition of ‘‘mountain tea’’ from Sideritis clandestina subsp. clandestina and evaluation of its behavioral and oxidant/antioxidant effects on adult mice. Eur J Nutr 52:107–116

    Article  CAS  PubMed  Google Scholar 

  12. Evstatieva LN, Alipieva KI (2011) Conservation and sustainable use of threatened medicinal plant Sideritis scardica in Bulgaria 89–92

  13. Nuñez DR, De Castro CO, Tomas-Lorente F, Ferreres F, Barberan FAT (1990) Infrasectional systematics of the genus Sideritis L. section Sideritis (Lamiaceae). Bot J Linn Soc 103:325–349

    Article  Google Scholar 

  14. Group CPW, Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE, Kim K-J, Kress WJ, Schneider H, van AlphenStahl J, Barrett SCH, van den Berg C, Bogarin D, Burgess KS, Cameron KM, Carine M, Chacón J, Clark A, Clarkson JJ, Conrad F, Devey DS, Ford CS, Hedderson TAJ, Hollingsworth ML, Husband BC, Kelly LJ, Kesanakurti PR, Kim JS, Kim Y-D, Lahaye R, Lee H-L, Long DG, Madriñán S, Maurin O, Meusnier I, Newmaster SG, Park C-W, Percy DM, Petersen G, Richardson JE, Salazar GA, Savolainen V, Seberg O, Wilkinson MJ, Yi D-K, Little DP (2009) A DNA barcode for land plants. Proc Natl Acad Sci 106:12794–12797

    Article  Google Scholar 

  15. Is Álvarez, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    Article  Google Scholar 

  16. Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Garden 82:247–277

    Article  Google Scholar 

  17. Yousefzadeh H, Hosseinzadeh Colagar A, Tabari M, Sattarian A, Assadi M (2012) Utility of ITS region sequence and structure for molecular identification of Tilia species from Hyrcanian forests. Iran. Plant Syst Evol 298:947–961

  18. Rubinoff D, Cameron S, Will K (2006) Are plant DNA barcodes a search for the Holy Grail? Trends Ecol Evol 21:1–2

    Article  PubMed  Google Scholar 

  19. Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5:e8613

    Article  PubMed Central  PubMed  Google Scholar 

  20. Coleman AW (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet 19:370–375

    Article  CAS  PubMed  Google Scholar 

  21. Coleman AW (2007) Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res 35:3322–3329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Gao T, Yao H, Song J, Liu C, Zhu Y, Ma X, Pang X, Xu H, Chen S (2010) Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. J Ethnopharmacol 130:116–121

    Article  CAS  PubMed  Google Scholar 

  23. Merget B, Koetschan C, Hackl T, Förster F, Dandekar T, Müller T, Schultz Jr, Wolf M (2012) The ITS2 Database. J Vis Exp 61:3806

    PubMed  Google Scholar 

  24. Müller T, Philippi N, Dandekar T, Schultz Jr, Wolf M (2007) Distinguishing species. RNA 13:1469–1472

    Article  PubMed Central  PubMed  Google Scholar 

  25. Pang X, Song J, Zhu Y, Xie C, Chen S (2010) Using DNA barcoding to identify species within Euphorbiaceae. Planta Med 76:1784

    Article  CAS  PubMed  Google Scholar 

  26. Bosmali I, Ganopoulos I, Madesis P, Tsaftaris A (2012) Microsatellite and DNA-barcode regions typing combined with high resolution melting (HRM) analysis for food forensic uses: a case study on lentils (Lens culinaris). Food Res Int 46:141–147

    Article  CAS  Google Scholar 

  27. Faria MA, Magalhães A, Nunes ME, Oliveira M (2013) High resolution melting of trnL amplicons in fruit juices authentication. Food Control 33(1):136–141

    Article  CAS  Google Scholar 

  28. Ganopoulos I, Aravanopoulos F, Madesis P, Pasentsis K, Bosmali I, Ouzounis C, Tsaftaris A (2013) Τaxonomic identification of Mediterranean pines and their hybrids based on the high resolution melting (HRM) and trnL approaches: from cytoplasmic inheritance to timber tracing. PLoS One 8:e60945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ganopoulos I, Bazakos C, Madesis P, Kalaitzis P, Tsaftaris A (2013) Barcode-DNA High Resolution Melting (Bar-HRM) analysis as a novel close-tubed and accurate tool for olive oil forensic use. J Sci Food Agric 93(9):2281–2286

    Article  CAS  PubMed  Google Scholar 

  30. Ganopoulos I, Madesis P, Darzentas N, Argiriou A, Tsaftaris A (2012) Barcode High Resolution Melting (Bar-HRM) analysis for detection and quantification of PDO “Fava Santorinis” (Lathyrus clymenum) adulterants. Food Chem 133:505–512

    Article  CAS  PubMed  Google Scholar 

  31. Ganopoulos I, Madesis P, Tsaftaris A (2012) Universal ITS2 barcoding DNA region coupled with high-resolution melting (HRM) analysis for seed authentication and adulteration testing in leguminous forage and pasture species. Plant Mol Biol Report 30:1–7

    Article  Google Scholar 

  32. Jaakola L, Suokas M, Häggman H (2010) Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chem 123:494–500

    Article  CAS  Google Scholar 

  33. Madesis P, Ganopoulos I, Anagnostis A, Tsaftaris A (2012) The application of Bar-HRM (Barcode DNA-High Resolution Melting) analysis for authenticity testing and quantitative detection of bean crops (Leguminosae) without prior DNA purification. Food Control 25:576–582

    Article  CAS  Google Scholar 

  34. Madesis P, Ganopoulos I, Bosmali I, Tsaftaris A (2013) Barcode high resolution melting analysis for forensic uses in nuts: a case study on allergenic hazelnuts (Corylus avellana). Food Res Int 50:351–360

    Article  CAS  Google Scholar 

  35. Schmiderer C, Mader E, Novak J (2010) DNA-based identification of Helleborus Niger by high-resolution melting analysis. Planta Med 76:1934–1937

    Article  CAS  PubMed  Google Scholar 

  36. Germer S, Higuchi R (1999) Single-tube genotyping without oligonucleotide probes. Genome Res 9:72–78

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Vossen RHAM, Aten E, Roos A, den Dunnen JT (2009) High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum Mutat 30:860–866

    Article  CAS  PubMed  Google Scholar 

  38. Ganopoulos I, Argiriou A, Tsaftaris A (2011) Microsatellite high resolution melting (SSR-HRM) analysis for authenticity testing of protected designation of origin (PDO) sweet cherry products. Food Control 22:532–541

    Article  CAS  Google Scholar 

  39. Mackay JF, Wright CD, Bonfiglioli RG (2008) A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. Plant Methods 4:8

    Article  PubMed Central  PubMed  Google Scholar 

  40. Mader E, Lukas B, Novak J (2008) A strategy to setup codominant microsatellite analysis for high-resolution-melting-curve-analysis (HRM). BMC Genet 9:69

    Article  PubMed Central  PubMed  Google Scholar 

  41. Yao H, Song J, Liu C, Luo K, Han J, Li Y, Pang X, Xu H, Zhu Y, Xiao P (2010) Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One 5:e13102

    Article  PubMed Central  PubMed  Google Scholar 

  42. Monis PT, Giglio S, Saint CP (2005) Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem 340:24–34

    Article  CAS  PubMed  Google Scholar 

  43. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

    Article  CAS  PubMed  Google Scholar 

  44. Hewson K, Noormohammadi AH, Devlin JM, Mardani K, Ignjatovic J (2009) Rapid detection and non-subjective characterisation of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Arch Virol 154:649–660

    Article  CAS  PubMed  Google Scholar 

  45. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Barber JC, Francisco-Ortega J, Santos-Guerra A, Turner KG, Jansen RK (2002) Origin of Macaronesian Sideritis L. (Lamioideae: Lamiaceae) inferred from nuclear and chloroplast sequence datasets. Mol Phylogenet Evol 23:293–306

    Article  CAS  PubMed  Google Scholar 

  47. Baden C (1991) Sideritis L. Edinburgh University Press, Edinburgh

    Google Scholar 

  48. Margaris NS, Koedam A, Vokou D (1982) Aromatic plants: basic and applied aspects. Proceedings of an international symposium on aromatic plants. Springer

  49. Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50:1748–1754

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this study was funded by the SEE-ERA.NET PLUS-ERA 135/01 MOUNTEA-CONSE Project. The authors would like to thank Prof Dr S. Kokkini for the valuable discussions on a sample of Sideritis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Madesis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalivas, A., Ganopoulos, I., Xanthopoulou, A. et al. DNA barcode ITS2 coupled with high resolution melting (HRM) analysis for taxonomic identification of Sideritis species growing in Greece. Mol Biol Rep 41, 5147–5155 (2014). https://doi.org/10.1007/s11033-014-3381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3381-5

Keywords

Navigation