Skip to main content
Log in

Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ethylene response factors (ERF) play crucial roles in plant development and response to stresses. Here, a novel cDNA fragment (MsERF8) encoding an ERF protein with an AP2 domain was isolated and characterized from alfalfa. The MsERF8 cDNA has an open reading frame of 603 bp and encodes a nuclear protein of 201 amino acids. Q-RT-PCR analysis revealed that MsERF8 was strongly enriched in roots and leaves compared with stems, flower buds and flowers of mature alfalfa plants. Bioinformatic analysis of the MsERF8 promoter indicated a number of elements associated with stress-related responses, and MsERF8 transcripts in alfalfa seedlings were induced by NaCl, PEG6000, Al2(SO4)3 and five different hormones. Expression of MsERF8 in transgenic tobacco plants resulted in higher tolerance to salinity than with non-transgenic plants. This data shows that MsERF8 is a gene which prevents or alleviates salinity damage and has strong potential to impart salt tolerance to other crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IAA:

Indole-3-acetic acid

ABA:

Abscisic acid

GA:

Gibberellin acid

SA:

Salicylic acid

Eth:

Ethrel

MeJA:

Methyl jasmonate

MDA:

Malondialdehyde

References

  1. Chen YE, Schaller GE (2005) Ethylene signal transduction. Ann Bot 95:901–915

    Article  PubMed  CAS  Google Scholar 

  2. Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    Article  CAS  Google Scholar 

  3. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  PubMed  CAS  Google Scholar 

  4. Zhang GY, Chen M, Chen XP, Xu ZS, Guan S, Li LC, Li AL, Guo JM, Mao L, Ma YZ (2008) Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot 59(15):4095–4107

    Article  PubMed  CAS  Google Scholar 

  5. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  PubMed  CAS  Google Scholar 

  6. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  7. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanism. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  8. Hao DY, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem 273(41):26857–26861

    Article  PubMed  CAS  Google Scholar 

  9. Seo YJ, Park JB, Cho YJ, Jung C, Seo HS, Park SK, Nahm BH, Song JT (2010) Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cells 30:271–277

    Article  PubMed  CAS  Google Scholar 

  10. Zhang HW, Liu W, Wan LY, Li F, Dai LY, Li DJ, Zhang ZJ, Huang RF (2010) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 19:809–818

    Article  PubMed  CAS  Google Scholar 

  11. Zhang ZJ, Li F, Li DJ, Zhang HW, Huang RF (2010) Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232:765–774

    Article  PubMed  CAS  Google Scholar 

  12. Tian Y, Zhang HW, Pan XW, Chen XL, Zhang ZJ, Lu XY, Huang RF (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20:857–866

    Article  PubMed  CAS  Google Scholar 

  13. Zhang GY, Chen M, Li LC, Xu ZS, Chen XP, Guo JM, Ma YZ (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60(13):3781–3796

    Article  PubMed  CAS  Google Scholar 

  14. Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    Article  PubMed  CAS  Google Scholar 

  15. Bnaebderrahim MA, Mansour H, Ali F (2009) Diversity of lucerne (Medicago sativa L.) populations in south Tunisia. Pak J Bot 41(6):2851–2861

    Google Scholar 

  16. Höfgen R, Willmitzer L (1988) Storage of competent cells for agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  Google Scholar 

  17. Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366

    Article  Google Scholar 

  18. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  19. Wang YC, Gao CQ, Liang YN, Wang C, Yang CP, Liu GF (2010) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol 167:222–230

    Article  PubMed  CAS  Google Scholar 

  20. Okamuro JK, Caster B, Villarroel R, Montagu MV, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Article  PubMed  CAS  Google Scholar 

  21. Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 2:393–404

    Article  Google Scholar 

  22. Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  PubMed  CAS  Google Scholar 

  23. Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  PubMed  CAS  Google Scholar 

  24. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  25. Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22

    CAS  Google Scholar 

  26. Covey SN, Lomonossoff GP, Hull R (1981) Characterisation of cauliflower mosaic virus DNA sequences which encode major polyadenylated transcripts. Nucleic Acids Res 9(24):6735–6747

    Article  PubMed  CAS  Google Scholar 

  27. Balazs E, Bouzoubaa S, Guilley H, Jonard G, Paszkowski J, Richards K (1985) Chimeric vector construction for higher plant transformation. Gene 40(2–3):343–348

    Article  PubMed  CAS  Google Scholar 

  28. Tu CH, Liu WP, Huang LL, Mo YQ, Yang DZ (2009) Cloning and transcriptional activity of a novel ovarian-specific promoter from rat retrovirus-like elements. Arch Biochem Biophys 485:24–29

    Article  PubMed  CAS  Google Scholar 

  29. Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762

    Article  PubMed  CAS  Google Scholar 

  30. Kitajima S, Koyama T, Ohme-Takagi M, Shinshi H, Sato F (2000) Characterization of gene expression of NsERFs, transcription factors of basic PR genes from Nicotiana sylvestris. Plant Cell Physiol 41(6):817–824

    PubMed  CAS  Google Scholar 

  31. Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano S (2003) Ethylene Response Factor 1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  PubMed  CAS  Google Scholar 

  32. Zhang XL, Zhang ZJ, Chen J, Chen Q, Wang XC, Huang RF (2005) Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development. Planta 222:494–501

    Article  PubMed  CAS  Google Scholar 

  33. Gao SM, Zhang HW, Tian Y, Li F, Zhang ZJ, Lu XY, Chen XL, Huang RF (2008) Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Rep 27:1787–1795

    Article  PubMed  CAS  Google Scholar 

  34. Zhang HW, Huang ZJ, Xie BY, Chen Q, Tian X, Zhang XL, Zhang HB, Lu XY, Huang DF, Huang RF (2004) The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220:262–270

    Article  PubMed  CAS  Google Scholar 

  35. Wang H, Huang ZJ, Chen Q, Zhang ZJ, Zhang HB, Wu YM, Huang DF, Huang RF (2004) Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55:183–192

    Article  PubMed  CAS  Google Scholar 

  36. Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  PubMed  CAS  Google Scholar 

  37. Esfandiari E, Shekari F, Shekari F, Esfandiari M (2007) The effect of salt stress on antioxidant enzymes, activity and lipid peroxidation on the wheat seedling. Not Bot Hort Agrobot Cluj 35(1):48–56

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no. 30871819) and the earmarked fund for Modern Agro-industry Technology Research System (No. CARS-35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Yang, Q., Gruber, M. et al. Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity. Mol Biol Rep 39, 6067–6075 (2012). https://doi.org/10.1007/s11033-011-1421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1421-y

Keywords

Navigation