Skip to main content

Advertisement

Log in

Association of CTLA-4 gene polymorphisms with sporadic breast cancer risk and clinical features in Han women of Northeast China

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an inhibitory molecule that plays a pivotal role in downregulating T-cell mediated immune responses. To determine the role of CTLA-4 in tumor immunity, and to validate previous results as well, we investigated four tag single nucleotide polymorphisms (SNPs) of CTLA-4 in a relatively large Chinese Han cohort from northeastern China. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP) in 581 patients and 566 age-matched controls. Our data indicated that compared with the common genotype and allele of each SNP, the −1722 CC genotype and C allele showed an increased risk of breast cancer (P = 0.030, odds ratio (OR) = 1.457, 95% confidence internal (CI) 1.036–2.051; P = 0.024, OR = 1.214, 95% CI 1.026–1.436, respectively). The −1661 GG genotype and G allele were also associated with an increased risk of breast cancer (P = 0.018, OR = 1.396, 95% CI 1.058–1.843; P = 0.013, OR = 1.353, 95% CI 1.066–1.717, respectively). In the haplotype analysis, the CAAA haplotype showed a higher frequency in cases (P = 0.004), and this association remained significant after correcting the P value for multiple testing. Associations were shown between the SNPs of CTLA-4 and lymph node metastasis, estrogen receptor (ER), progesterone receptor (PR) and P53 statuses. These results indicate that some SNPs in the CTLA-4 gene may affect the risk of breast cancer and show that some SNPs are associated with breast cancer characteristics in Han women in northeastern China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CTLA-4:

Cytotoxic T lymphocyte antigen-4

SNP:

Single nucleotide polymorphism

OR:

Odds ratio

CI:

Confidence interval

ER:

Estrogen receptor

PR:

Progesterone receptor

LN:

Lymph node

TZ:

Tumor size

PCR-RFLP:

Polymerase chain reaction-restriction fragment length polymorphism

HWE:

Hardy–Weinberg equilibrium

References

  1. Coughlin SS, Ekwueme DU (2009) Breast cancer as a global health concern. Cancer Epidemiol 33(5):315–318

    Article  PubMed  Google Scholar 

  2. Welch DR, Steeg PS, Rinker-Schaeffer CW (2000) Molecular biology of breast cancer metastasis. Genetic regulation of human breast carcinoma metastasis. Breast Cancer Res 2(6):408–416

    Article  PubMed  CAS  Google Scholar 

  3. Reeves GK, Travis RC, Green J, Bull D, Tipper S, Baker K, Beral V, Peto R, Bell J, Zelenika D, Lathrop M (2010) Incidence of breast cancer and its subtypes in relation to individual and multiple low-penetrance genetic susceptibility loci. JAMA 304(4):426–434

    Article  PubMed  CAS  Google Scholar 

  4. DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9(4):212

    Article  PubMed  Google Scholar 

  5. Whiteside TL (2010) Immune responses to malignancies. J Allergy Clin Immunol 125:S272–S283

    Article  PubMed  Google Scholar 

  6. Ghaderi A, Yeganeh F, Kalantari T, Talei AR, Pezeshki AM, Doroudchi M, Dehaghani AS (2004) Cytotoxic T lymphocyte antigen-4 gene in breast cancer. Breast Cancer Res Treat 86(1):1–7

    Article  PubMed  CAS  Google Scholar 

  7. Fu Z, Li D, Jiang W, Wang L, Zhang J, Xu F, Pang D, Li D (2010) Association of BTLA gene polymorphisms with the risk of malignant breast cancer in Chinese women of Heilongjiang Province. Breast Cancer Res Treat 120(1):195–202

    Article  PubMed  CAS  Google Scholar 

  8. Linsley PS, Greene JL, Tan P, Bradshaw J, Ledbetter A, Anasetti C, Damle NK (1992) Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J Exp Med 176:1595–1604

    Article  PubMed  CAS  Google Scholar 

  9. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green GM, Thompson CB, Bluestone JA (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1:405–413

    Article  PubMed  CAS  Google Scholar 

  10. van der Merwe P, Bodian D, Daenke S, Linsley PS, Davis SJ (1997) CD80 (B7–1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med 185:393–403

    Article  PubMed  Google Scholar 

  11. Appleman LJ, Berezovskaya A, Grass I, Boussiotis VA (2000) CD28 costimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J Immunol 164:144–151

    PubMed  CAS  Google Scholar 

  12. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3 + regulatory T cell function. Science 322:271–275

    Article  PubMed  CAS  Google Scholar 

  13. O’Day SJ, Hamid O, Urba WJ (2007) Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies. Cancer 110:2614–2627

    Article  PubMed  Google Scholar 

  14. Menard C, Ghiringhelli F, Roux S, Chaput N, Mateus C, Grohmann U, Caillat-Zucman S, Zitvogel L (2008) Ctla-4 blockade confers lymphocyte resistance to regulatory T-cells in advanced melanoma: surrogate marker of efficacy of tremelimumab? Clin Cancer Res 14:5242–5249

    Article  PubMed  CAS  Google Scholar 

  15. Erfani N, Razmkhah M, Talei AR, Pezeshki AM, Doroudchi M, Monabati A, Ghaderi A (2006) Cytotoxic T lymphocyte antigen-4 promoter variants in breast cancer. Cancer Genet Cytogenet 165:114–120

    Article  PubMed  CAS  Google Scholar 

  16. Wang L, Li D, Fu Z, Li H, Jiang W, Li D (2007) Association of CTLA-4 gene polymorphisms with sporadic breast cancer in Chinese Han population. BMC cancer 7:173

    Article  PubMed  Google Scholar 

  17. Hudson LL, Rocca K, Song YW, Pandev JP (2002) CTLA-4 gene polymorphisms in systemic lupus erythematosus: a highly significant association with a determinant in the promoter region. Hum Genet 111:452–455

    Article  PubMed  CAS  Google Scholar 

  18. Ban Y, Concepcion ES, Villanueva R, Greenberg DA, Davies TF, Tomer Y (2004) Analysis of immune regulatory genes in familial and sporadic Graves’ disease. J Clin Endocrinol Metab 89(9):4562–4568

    Article  PubMed  CAS  Google Scholar 

  19. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    Article  PubMed  CAS  Google Scholar 

  20. Loizidou MA, Michael T, Neuhausen SL, Newbold RF, Marcou Y, Kakouri E, Daniel M, Papadopoulos P, Malas S, Kyriacou K, Hadjisawas A (2008) Genetic polymorphisms in the DNA repair genes XRCC1, XRCC2, and XRCC3 and risk of breast cancer in Cyprus. Breast Cancer Res Treat 112(3):575–579

    Google Scholar 

  21. Hurwitz AA, Kwon ED, van Elsas A (2000) Costimulatory wars: the tumor menace. Curr Opin Immunol 12:589–596

    Article  PubMed  CAS  Google Scholar 

  22. Chen L (2004) Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 4:336–347

    Article  PubMed  CAS  Google Scholar 

  23. Wang XB, Pirskanen R, Giscombe R, Lefvert AK (2008) Two SNPs in the promoter region of the CTLA-4 gene affect binding of transcription factors and are associated with human myasthenia gravis. J Intern Med 263:61–69

    Article  PubMed  CAS  Google Scholar 

  24. Kouki T, Sawai Y, Gardine CA, Fisfalen ME, Alegre ML, DeGroot LJ (2000) CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves’ disease. J Immunol 165:6606–6611

    PubMed  CAS  Google Scholar 

  25. Hughes TA (2006) Regulation of gene expression by alternative untranslated regions. Trends Genet 22:119–122

    Article  PubMed  CAS  Google Scholar 

  26. Ueda H, Howson JM, Esposito L et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511

    Article  PubMed  CAS  Google Scholar 

  27. Anjos SM, Shao W, Marchand L, Polychronakos C (2005) Allelic effects on gene regulation at the autoimmunity-predisposing CTLA4 locus: a re-evaluation of the 3′ +6230G>A polymorphism. Genes Immun 6:305–311

    Article  PubMed  CAS  Google Scholar 

  28. Mayans S, Lackovic K, Nyholm C, Lindgren P, Ruikka K, Eliasson M, Cilio CM, Holmberg D (2007) CT60 genotype does not affect CTLA-4 isoform expression despite association to T1D and AITD in northern Sweden. BMC Med Genet 8:3

    Article  PubMed  Google Scholar 

  29. Beenken SW, Grizzle WE, Crowe DR, Conner MG, Weiss HL, Sellers MT, Krontiras H, Urist MM, Bland KI (2001) Molecular biomarkers for breast cancer prognosis: coexpression of c-erbB-2 and p53. Ann Surg 233:630–638

    Article  PubMed  CAS  Google Scholar 

  30. Soerjomataram I, Louwman MW, Ribot JG, Roukema JA, Coebergh JW (2008) An overview of prognostic factors for long-term survivors of breast cancer. Breast Cancer Res Treat 107:309–330

    Article  PubMed  CAS  Google Scholar 

  31. Ponzone R, Biglia N, Jacomuzzi ME, Mariani L, Dominguez A, Sismondi P (2006) Antihormones in prevention and treatment of breast cancer. Ann N Y Acad Sci 1089:143–158

    Article  PubMed  CAS  Google Scholar 

  32. Group EBCTC (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717

    Article  Google Scholar 

  33. Rakha EA, El-Sayed ME, Green AR, Paish EC, Powe DG, Nicholson RI, Lee AH, Robertson JF, Rllis IO (2007) Biologic and clinical characteristics of breast cancer with single hormone receptor positive phenotype. J Clin Oncol 25:4772–4778

    Article  PubMed  Google Scholar 

  34. Hernández J, Ko A, Sherman LA (2001) CTLA-4 blockade enhances the CTL responses to the p53 self-tumor antigen. J Immunol 166:3908–3914

    Google Scholar 

  35. Espenschied J, Lamont J, Lonqmate J, Pendas S, Wang Z, Diamond DJ, Ellenhorn JD (2003) CTLA-4 blockade enhances the therapeutic effect of an attenuated poxvirus vaccine targeting p53 in an established murine tumor model. J Immunol 170:3401–3407

    Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Natural Science Foundation of China (31070780), and the Major Project of Technology Department, Heilongjiang Province (GB05C402). We thank all patients and healthy volunteers for providing blood samples. We are grateful for the collaboration received from the participating hospitals and their staff.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dianjun Li or Da Pang.

Additional information

Dalin Li and Qiujin Zhang have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Zhang, Q., Xu, F. et al. Association of CTLA-4 gene polymorphisms with sporadic breast cancer risk and clinical features in Han women of Northeast China. Mol Cell Biochem 364, 283–290 (2012). https://doi.org/10.1007/s11010-012-1228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1228-8

Keywords

Navigation