Skip to main content

Advertisement

Log in

Lipid Synthesis in Lactation: Diet and the Fatty Acid Switch

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The lipid component of milk provides the critical nutritional source for generating both energy and essential nutrients to the growth of the newborn. Three types of substrate are utilized to synthesize milk triacylglycerides (TAG): dietary fat, fatty acids mobilized from adipose tissue stores, and lipids synthesized de novo synthesis from glucose and other dietary precursors, a process often referred to as de novo lipogenesis. The utilization of these various sources for TAG synthesis by the mammary epithelial cells is influenced by both the stage of lactation and the diet. From studies of gene expression in FVB mice, we observed that genes for β-oxidation of fatty acids are downregulated along with the expression of Acyl-CoA thioesterase 1 (ACOT1). As a control mechanism we propose that during pregnancy ACOT1 provides a supply of cytoplasmic free fatty acids which increase the activation of PPARγ. Ligand-induced activation of the PPAR/RXR transcription factor complex by free fatty acids, upregulates expression of genes required for β-oxidation of fatty acids. The fall in ACOTs at secretory activation may facilitate the switch to lipogenesis perhaps mediated by activation of the LXR/RXR transcription factor complex. The response to changes in the supply of dietary lipids, on the other hand, is likely to be mediated by SREBP1, possibly acting through modulation of Spot 14. Stability of SREBP1 may be enhanced by a significant increase in Akt at secretory activation. These regulatory pathways may be critical to the production of milk with a balanced TAG composition to support neonatal development of the newborn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ACBP:

acyl-CoA binding protein

ACOT:

acyl-CoA thioesterase

ADRP:

adipocyte differentiation regulated protein or adipophillin

AGPAT:

acyl-glycerol-3-phosphate-acyl transferase

ATP:

adenosine triphosphosphate

ER:

endoplasmic reticulum

ELOVL:

elongation of very long chain fatty acids

FABP:

fatty acid binding protein

FABP-FA:

fatty acid bound fatty acid binding protein

FAD:

Δ5-fatty acid desaturase

FASN:

fatty acid synthase

FFA:

free fatty acid

GK:

glycerol kinase

GPAT:

glycerol-3-phosphate acyltransferase

HSL:

hormone sensitive lipase

INSIG:

insulin induced gene

L2:

day 2 of lactation

L9:

day 9 of lactation

LACS:

long chain acyl-CoA synthase

LC-PUFA:

long chain polyunsaturated fatty acid

LPL:

lipoprotein lipase

LXR:

liver X receptor

MAG:

monoacylglycerol

MCFA:

medium chain fatty acid

mTOR:

mammalian target of Rapamycin

MUFA:

monounsaturated fatty acid

P17:

day 17 of pregnancy

n-SREBP:

nuclear sterol response element binding protein

PPAR:

peroxidase proliferators-activated receptor

PPRE:

PPAR response element

PUFA:

polyunsaturated fatty acid

RXR:

retinoic X receptor

S14:

Spot 14

SCAP:

SREBP cleavage activating protein

SCD:

stearoyl-coenzyme A desaturase

SREBP:

sterol response element binding protein

TAG:

triacyl glycerol

VLDL:

very low density lipoprotein

Reference

  1. Neville MC. Lactation and its hormonal control. In: Neill JD, editor. Knobil and Neils physiology of reproduction. 3rd ed. New York: Elsevier; 2006. p. 2993–3053.

    Google Scholar 

  2. Voet D, Voet JG. Biochemistry: biomolecules, mechanism of enyme action and metabolism , vol 1. 3rd ed. Hoboken: Wiley; 2004.

    Google Scholar 

  3. Larque ELVI, Demmelmair HANS, Koletzko BERT. Perinatal supply and metabolism of long-chain polyunsaturated fatty acids: importance for the early development of the nervous system. Ann NY Acad Sci 2002;967:299–310.

    Article  PubMed  CAS  Google Scholar 

  4. Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM. Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res 2003;44:1100–12.

    Article  PubMed  CAS  Google Scholar 

  5. Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia 2003;8:287–307.

    Article  PubMed  Google Scholar 

  6. Rudolph MC, McManaman JL, Phang T, Russel T, Kominsky DM, Serkova N, Anderson SM, Neville MC. Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genomics 2006;28:323–36.

    Article  PubMed  CAS  Google Scholar 

  7. Insull W Jr, Hirsch J, James T, Ahrens EH. The fatty acids of human milk. II Alterations produced by manipulations of caloric balance and exhange of dietary fats. J Clin Invest 1958;38:443–50.

    Google Scholar 

  8. Neville MC, Picciano MF. Regulation of milk lipid synthesis and composition. Annu Rev Nutr 1997;17:159–84.

    Article  PubMed  CAS  Google Scholar 

  9. Jensen DR, Bessesen DH, Etienne J, Eckel RH, Neville MC. Distribution and source of lipoprotein lipase inmouse mammary gland. J Lipid Res 1991;32:733–42.

    PubMed  CAS  Google Scholar 

  10. Ntambi JM, Miyazaki M. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res 2004;43:91–104.

    Article  PubMed  CAS  Google Scholar 

  11. Pegorier JP, May CL, Girard J. Control of gene expression by fatty acids. J Nutr 2004;134:2444S–9S.

    PubMed  CAS  Google Scholar 

  12. Beaven SW, Tontonoz P. Nuclear receptors in lipid metabolism: targeting the heart of dyslipidemia. Annu Rev Med 2006;57:313–29.

    Article  PubMed  CAS  Google Scholar 

  13. Ide T, Shimano H, Yoshikawa T, Yahagi N, memiya-Kudo M, Matsuzaka T, Nakakuki M, Yatoh S, Iizuka Y, Tomita S, Ohashi K, Takahashi A, Sone H, Gotoda T, Osuga Ji, Ishibashi S, Yamada N. Cross-talk between peroxisome proliferator-activated receptor (PPAR) {alpha} and Liver X Receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling. Mol Endocrinol 2003;17:1255–67.

    Article  PubMed  CAS  Google Scholar 

  14. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD, Shan B. Role of LXRs in control of lipogenesis. Genes Dev 2000;14:2831–8.

    Article  PubMed  CAS  Google Scholar 

  15. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, Shan B, Brown MS, Goldstein JL, Mangelsdorf DJ. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 2000;14:2819–30.

    Article  PubMed  CAS  Google Scholar 

  16. Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha áand delta. Proc Natl Acad Sci USA 1997;94:4312–7.

    Article  PubMed  CAS  Google Scholar 

  17. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha áandágamma. Proc Natl Acad Sci USA 1997;94:4318–23.

    Article  PubMed  CAS  Google Scholar 

  18. Brauweiler A, Lorick KL, Lee JP, Tsai YC, Chan D, Weissman AM, Drabkin HA, Gemmill RM. RING-dependnet tumor suppression and G2/M arrest induced by the TRC8 hereditary kidney cancer gene. Oncogene 2007;26:2263–71.

    Article  PubMed  CAS  Google Scholar 

  19. Gemmill RM, Bemis LT, Lee JP, Sozen MA, Baron A, Zeng C, Erickson PF, Hooper JE, Drabkin HA. The TRC8 hereditary kidney gene suppresses growth and functions wiht VHL in a common pathway. Oncogene 2002;21:3507–16.

    Article  PubMed  CAS  Google Scholar 

  20. Kuramochi Y, Takagi-Sakuma M, Kitahara M, Emori R, Asaba Y, Sakaguchi R, Watanabe T, Kuroda J, Hiratsuka K, Nagae Y, Suga T, Yamada J. Characterization of mouse homolog of brain acyl-CoA hydrolase: molecular cloning and neuronal localization. Mol Brain Res 2002;98:81–92.

    Article  PubMed  CAS  Google Scholar 

  21. Kuramochi Y, Nishimura Si, Takagi-Sakuma M, Watanabe T, Kuroda J, Hiratsuka K, Nagae Y, Suga T, Yamada J. Immunohistochemical localization of acyl-CoA hydrolase/thioesterase multigene family members to rat epithelia. Histochem Cell Biol 2002;117:211–217.

    Article  PubMed  CAS  Google Scholar 

  22. Yamada J, Kuramochi Y, Takoda Y, Takagi M, Suga T. Hepatic induction of mitochondrial and cytosolic acyl-coenzyme a hydrolases/thioesterases in rats under conditions of diabetes and fasting. Metabolism 2003;52:1527–9.

    Article  PubMed  CAS  Google Scholar 

  23. Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H. Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-[beta]-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun 2001;287:562–7.

    Article  PubMed  CAS  Google Scholar 

  24. Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha á(PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA 1999;96:7473–8.

    Article  PubMed  CAS  Google Scholar 

  25. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA 2003;100:12027–32.

    Article  PubMed  CAS  Google Scholar 

  26. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 2004;6:839–48.

    Article  CAS  Google Scholar 

  27. Goldstein JL, Bose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell 2006;24:35–46.

    Article  CAS  Google Scholar 

  28. Rawson RB. The SREBP pathway [mdash] insights from insigs and insects. Nat Rev Mol Cell Biol 2003;4:631–40.

    Article  PubMed  CAS  Google Scholar 

  29. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002;109:1125–31.

    Article  PubMed  CAS  Google Scholar 

  30. Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 1997;99:838–45.

    Article  PubMed  CAS  Google Scholar 

  31. Du X, Kristiana I, Wong J, Brown AJ. Involvement of Akt in ER-to-golgi transport of SCAP/SREBP: a link between a key cell proliferative pathway and membrane synthesis. Mol Biol Cell 2006;17:2735–45.

    Article  PubMed  CAS  Google Scholar 

  32. Bengoechea-Alonso MT, Ericsson J. SREBP in signal transduction: cholesterol metaboliusmand beyond. Curr Opin Cell Biol 2007;19:215–22.

    Article  PubMed  CAS  Google Scholar 

  33. Gimpl G, Burger K, Fahrenholz F. A closer look at the cholersterol sensor. Trends Biochem Sci 2002;27:596–9.

    Article  PubMed  CAS  Google Scholar 

  34. Sundqvist A, goechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW, Ericsson J. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCFFbw7. Cell Metabolism 2005;1:379–91.

    Article  PubMed  CAS  Google Scholar 

  35. Lee JN, Gong Y, Zhang X, Ye J. Proteasomal degradation of ubiquitinated Insig proteins is determined by serine residues flanking ubiquitinated lysines. Proc Natl Acad Sci USA 2006;103:4958–63.

    Article  PubMed  CAS  Google Scholar 

  36. memiya-Kudo M, Shimano H, Hasty AH, Yahagi N, Yoshikawa T, Matsuzaka T, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Osuga Ji, Harada K, Gotoda T, Sato R, Kimura S, Ishibashi S, Yamada N. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. J Lipid Res 2002;43:1220–35.

    Google Scholar 

  37. Whiteman EL, Cho H, Birnbaum MJ. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 2002;13:444–51.

    Article  PubMed  CAS  Google Scholar 

  38. Yang ZZ, Tschopp O, Bauudy A, Dümmler B, Hynx D, Hemmings BA. Physiological functions of protein kinase B/Akt. Biochem Soc Trans 2004;32:350–4.

    Article  PubMed  CAS  Google Scholar 

  39. DeBerardinis RJ, Lum JJ, Thompson CB. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem 2006;281:37372–80.

    Article  PubMed  CAS  Google Scholar 

  40. Anderson SM, Rudolph MC, McManaman JL, Neville MC. Secretory activation in the mammary gland: it’s not just about milk protein synthesis. Breast Cancer Res 2007;9:204–17.

    Article  PubMed  CAS  Google Scholar 

  41. Summers SA, Kao AW, Kohn AD, Backus GS, Roth RA, Pessin JE, Birnbaum MJ. The role of glycogen synthase kinase 3β in insulin-stimulated glucose metabolism. J Biol Chem 2000;274:17934–40.

    Article  Google Scholar 

  42. Boxer RB, Stairs DB, Dugan KD, Notarfrancesco KL, Portocarrero CP, Keister BA, Belka GK, Cho H, Rathmell JC, Thompson CB, Birnbaum MJ, Chodosh LA. Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation. Cell Metab 2006;4:475–90.

    Article  PubMed  CAS  Google Scholar 

  43. Porstmann T, Griffiths B, CHung Y-L, Delpuech O, Griffiths JR, Downward J, Schulze A. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 2005;24:6465–81.

    PubMed  CAS  Google Scholar 

  44. Seelig S, Liaw C, Towle H, Oppenheimer J. Thyroid hormone attenuates and augments hepatic gene expression at a pretranslational level. Proc Natl Acad Sci USA 1981;78:4733–7.

    Article  PubMed  CAS  Google Scholar 

  45. Kinlaw WB, Tron P, Friedmann AS. Nuclear localization and hepatic zonation of rat “spot 14” protein: immunohistochemical investigation employing anti-fusion protein antibodies. Endocrinology 1992;131:3120–2.

    Article  PubMed  CAS  Google Scholar 

  46. Kinlaw WB, Church JL, Harmon J, Mariash CN. Direct evidence for a role of the “Spot 14” Protein in the Regulation of Lipid Synthesis. J Biol Chem 1995;270:16615–8.

    Article  PubMed  CAS  Google Scholar 

  47. Zhu Q, Anderson GW, Mucha GT, Parks EJ, Metkowski JK, Mariash CN. The spot 14 protein is required for de novo lipid synthesis in the lactating mammary gland. Endocrinology 2005;146:3343–50.

    Article  PubMed  CAS  Google Scholar 

  48. Brown S, Maloney M, Kinlaw W. “Spot 14” protein functions at the pretranslational level in the regulation of hepatic metabolism by thyroid hormone and glucose. J Biol Chem 1997;272:2163–6.

    Article  PubMed  CAS  Google Scholar 

  49. Blackman B, Russell T, Nordeen S, Medina D, Neville M. Claudin 7 expression and localization in the normal murine mammary gland and murine mammary tumors. Breast Cancer Res 2005;7:R248–55.

    Article  PubMed  CAS  Google Scholar 

  50. Stein T, Morris J, Davies C, Weber-Hall S, Duffy MA, Heath V, Bell A, Ferrier R, Sandilands G, Gusterson B. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 2004;6:R75–91.

    Article  PubMed  CAS  Google Scholar 

  51. Wan Y, Saghatelian A, Chong LW, Zhang CL, Cravatt BF, Evans RM. Maternal PPARγ protects nursing neonates by suppressing the production of inflammatory milk. Genes Dev 2007;21:1895–1908.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We especially thank Dr. Yamada, Department of Clinical Biochemistry at Tokyo University of Pharmacy and Life Sciences, for kindly providing reagents and for his informative correspondence. We also acknowledge Lisa Litzenberger for her assistance with the figures presented in this review. The authors would also like to thank the members of the Mammary Gland Biology Program Project Grant at the University of Colorado Health Sciences Center for discussions and sharing of ideas. Research in our labs (MCN and SMA) is supported by PO1-HD38129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, M.C., Neville, M.C. & Anderson, S.M. Lipid Synthesis in Lactation: Diet and the Fatty Acid Switch. J Mammary Gland Biol Neoplasia 12, 269–281 (2007). https://doi.org/10.1007/s10911-007-9061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-007-9061-5

Keywords

Navigation