Skip to main content
Log in

Two Gut-Associated Yeasts in a Tephritid Fruit Fly have Contrasting Effects on Adult Attraction and Larval Survival

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Yeast-insect interactions have been well characterized in drosophilid flies, but not in tephritid fruit flies, which include many highly polyphagous pest species that attack ripening fruits. Using the Queensland fruit fly (Bactrocera tryoni) as our model tephritid species, we identified yeast species present in the gut of wild-collected larvae and found two genera, Hanseniaspora and Pichia, were the dominant isolates. In behavioural trials using adult female B. tryoni, a fruit-agar substrate inoculated with Pichia kluyveri resulted in odour emissions that increased the attraction of flies, whereas inoculation with Hanseniaspora uvarum, produced odours that strongly deterred flies, and both yeasts led to decreased oviposition. Larval development trials showed that the fruit-agar substrate inoculated with the ‘deterrent odour’ yeast species, H. uvarum, resulted in significantly faster larval development and a greater number of adult flies, compared to a substrate inoculated with the ‘attractive odour’ yeast species, P. kluyveri, and a yeast free control substrate. GC-MS analysis of volatiles emitted by H. uvarum and P. kluyveri inoculated substrates revealed significant quantitative differences in ethyl-, isoamyl-, isobutyl-, and phenethyl- acetates, which may be responsible for the yeast-specific olfactory responses of adult flies. We discuss how our seemingly counterintuitive finding that female B. tryoni flies avoid a beneficial yeast fits well with our understanding of female choice of oviposition sites, and how the contrasting behavioural effects of H. uvarum and P. kluyveri raises interesting questions regarding the role of yeast-specific volatiles as cues to insect vectors. A better understanding of yeast-tephritid interactions could assist in the future management of tephritid fruit fly pests through the formulation of new “attract and kill” lures, and the development of probiotics for mass rearing of insects in sterile insect control programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anagnostou C, Dorsch M, Rohlfs M (2010) Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol Exp Appl 136:1–11. doi:10.1111/j.1570-7458.2010.00997.x

    Article  Google Scholar 

  • Balagawi S, Jackson K, Haq IU, Hood-Nowotny R, Resch C, Clarke AR (2014) Nutritional status and the foraging behaviour of Bactrocera tryoni with particular reference to protein bait spray. Physiol Entomol 39:33–43

    Article  CAS  Google Scholar 

  • Barker JSF, Vacek DC, East PD (1988) Attraction of larvae of Drosophila buzzatii and D. aldrichi to yeast species isolated from their natural environment. Aust J Zool 36:53–63

    Article  Google Scholar 

  • Bateman MA (1972) Ecology of fruit flies. Annu Rev Entomol 17:493–518. doi:10.1146/annurev.en.17.010172.002425

    Article  Google Scholar 

  • Becher PG et al (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828. doi:10.1111/j.1365-2435.2012.02006.x

    Article  Google Scholar 

  • Buser CC, Newcomb RD, Gaskett AC, Goddard MR (2014) Niche construction initiates the evolution of mutualistic interactions. Ecol Lett 17:1257–1264. doi:10.1111/ele.12331

    Article  PubMed  Google Scholar 

  • Cadez N, Poot GA, Raspor P, Smith MT (2003) Hanseniaspora meyeri sp. nov. Hanseniaspora clermontiae sp. nov., Hanseniaspora lachancei sp. nov. and Hanseniaspora opuntiae sp. nov., novel apiculate yeast species. Int J Syst Evol Microbiol 53:1671–1680. doi:10.1099/ijs.0.02618-0

    Article  CAS  PubMed  Google Scholar 

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi:10.1093/bioinformatics/btp348

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandler JA, Eisen JA, Kopp A (2012) Yeast communities of diverse Drosophila species: comparison of two symbiont groups in the same hosts. Appl Environ Microbiol 78:7327–7336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiaens JF et al (2014) The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Rep 9:425–432. doi:10.1016/j.celrep.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  • Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, Roderick GK, Yeates DK (2005) Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis Complex of fruit flies. Annu Rev Entomol 50(1):293–319. doi:10.1146/annurev.ento.50.071803.130428

    Article  CAS  PubMed  Google Scholar 

  • Clarke AR, Powell KS, Weldon CW, Taylor PW (2011) The ecology of Bactrocera tryoni (Diptera: Tephritidae): what do we know to assist pest management? Ann Appl Biol 158:26–54. doi:10.1111/j.1744-7348.2010.00448.x

    Article  Google Scholar 

  • Coluccio AE, Rodriguez RK, Kernan MJ, Neiman AM (2008) The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila. PLoS One 3:e2873. doi:10.1371/journal.pone.0002873

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunningham JP, Carlsson MA, Villa TF, Dekker T, Clarke AR (2016) Do fruit ripening volatiles enable resource specialism in polyphagous fruit flies? J Chem Ecol 42:931–940

    Article  CAS  PubMed  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect Semiochemicals. J Chem Ecol 39:840–859. doi:10.1007/s10886-013-0306-z

    Article  CAS  PubMed  Google Scholar 

  • Deutscher AT, Reynolds OL, Chapman TA (2016) Yeast: an overlooked component of Bactrocera tryoni (Diptera: Tephritidae) larval gut microbiota. J Econ Entomol 110:298–300. doi:10.1093/jee/tow262

    Google Scholar 

  • Dominiak BC, Westcott AE, Barchia IM (2003) Release of sterile Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), at Sydney, Australia. Aust J Exp Agric 43:519–528. doi:10.1071/ea01146

    Article  Google Scholar 

  • Drew RAI (1987) Reduction in fruit-fly (Tephritidae, Dacinae) populations in their endemic rain-forest habitat by frugivorous vertebrates. Aust J Zool 35:283–288

    Article  Google Scholar 

  • Duetz W, Bouwmeester H, Van Beilen J, Witholt B (2003) Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol 61:269–277

    Article  CAS  PubMed  Google Scholar 

  • Duyck PF, David P, Junod G, Brunel C, Dupont R, Quilici S (2006) Importance of competition mechanisms in successive invasions by polyphagous tephritids in la Reunion. Ecology 87:1770–1780. doi:10.1890/0012-9658(2006)87[1770:iocmis]2.0.co;2

    Article  PubMed  Google Scholar 

  • Dyck VA, Hendrichs J, Robinson AS (2005) Sterile insect technique. Principles and practice in area-wide integrated pest management. Springer, The Netherlands

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitt GP (1984) Oviposition behavior of two tephritid fruit-flies, Dacus tryoni and Dacus jarvisi, as influenced by the presence of larvae in the host fruit. Oecologia 62:37–46. doi:10.1007/bf00377370

    Article  PubMed  Google Scholar 

  • Gibson CM, Hunter MS (2010) Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett 13:223–234. doi:10.1111/j.1461-0248.2009.01416.x

    Article  PubMed  Google Scholar 

  • Haidani AE et al (2008) Isolation and characterisation of yeast strains for the olive fly Bactrocera oleae biological control. Moroccan J Biol 2:19–29

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT.Nucl acids Symp Ser 41:95-98

  • Hamby KA, Becher PG (2016) Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. J Pest Sci 89:621–630. doi:10.1007/s10340-016-0768-1

    Article  Google Scholar 

  • Hamby KA, Hernández A, Boundy-Mills K, Zalom FG (2012) Associations of yeasts with spotted-wing drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl and Environ Microbiol 78:4869–4873. doi:10.1128/aem.00841-12

    Article  CAS  Google Scholar 

  • Hendrichs J, Franz G, Rendon P (1995) Increased effectiveness and applicability of the sterile insect technique through male-only releases for control of Mediterranean fruit flies during fruiting seasons. J Appl Entomol 119:371–377

    Article  Google Scholar 

  • Holighaus G, Rohlfs M (2016) Fungal allelochemicals in insect pest management. Appl Microbiol Biotechnol 100:5681–5689. doi:10.1007/s00253-016-7573-x

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223. doi:0095–1137/97

  • Lachance MA, Gilbert DG, Starmer WT (1995) Yeast communities associated with Drosophila species and related flies in an eastern oak-pine forest: a comparison with western communities. J Ind Microbiol 14:484–494. doi:10.1007/bf01573963

    Article  CAS  PubMed  Google Scholar 

  • Löoke M, Kristjuahan K, Kristjuhan A (2011) Extraction of genomic Dna from yeasts for Pcr- based applications. BioTechniques 50:325–328. doi:10.2144/000113672.extraction

    PubMed  PubMed Central  Google Scholar 

  • Malacrida AR, Gomulski LM, Bonizzoni M, Bertin S, Gasperi G, Gugliclmino CR (2007) Globalization and fruitfly invasion and expansion: the medfly paradigm. Genetica 131:1–9. doi:10.1007/s10709-006-9117-2

    Article  CAS  PubMed  Google Scholar 

  • Masry A, Furlong MJ, Clarke AR, Cunningham JP (2016) An improved culturing method for opiine fruit fly parasitoids and its application to parasitoid monitoring in the field. Insect Science. doi:10.1111/1744-7917.12403

  • Meats A, Leighton SM (2004) Protein consumption by mated, unmated, sterile and fertile adults of the Queensland fruit fly, Bactrocera tryoni and its relation to egg production. Physiol Entomol 29:176–182. doi:10.1111/j.1365-3032.2004.00383.x

    Article  Google Scholar 

  • Molnárová J, Vadkertiová R, Stratilová E (2014) Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees. J Basic Microbiol 54:S74–S84. doi:10.1002/jobm.201300072

    Article  PubMed  Google Scholar 

  • Mori BA, Whitener AB, Leinweber Y, Revadi S, Beers EH, Witzgall P, Becher PG (2016) Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J Appl Ecol 54:170–177. doi:10.1111/1365-2664.12688

    Article  Google Scholar 

  • Murphy KA, Tabuloc CA, Cervantes KR, Chiu JC (2016) Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci Rep 6:22587. doi:10.1038/srep22587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthuthantri S, Clarke AR (2012) Five commercial citrus rate poorly as hosts of the polyphagous fruit fly Bactrocera tryoni (Froggatt)(Diptera: Tephritidae) in laboratory studies. Austral Entomology 51:289–298. doi:10.1111/j.1440-6055.2012.00866.x

    Article  Google Scholar 

  • Navarro-Llopis V, Primo J, Vacas S (2015) Bait station devices can improve mass trapping performance for the control of the Mediterranean fruit fly. Pest Manag Sci 71:923–927. doi:10.1002/ps.3864

    Article  CAS  PubMed  Google Scholar 

  • Parker AG (2005) Mass-rearing for sterile insect release. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, The Netherlands, pp 209–232

    Chapter  Google Scholar 

  • Pérez-Staples D, Weldon CW, Smallridge C, Taylor PW (2009) Pre-release feeding on yeast hydrolysate enhances sexual competitiveness of sterile male Queensland fruit flies in field cages. Entomol Exp Appl 131:159–166. doi:10.1111/j.1570-7458.2009.00841.x

    Article  Google Scholar 

  • Reuter M, Bell G, Greig D (2007) Increased outbreeding in yeast in response to dispersal by an insect vector. Curr Biol 17:81–83. doi:10.1016/j.cub.2006.11.059

    Article  Google Scholar 

  • Rohlfs M, Kürschner L (2010) Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. J Appl Entomol 134:667–671

    Google Scholar 

  • Rstudio Team (2016) RStudio: integrated development environment for R. RStudio, Inc., Boston http://rstudio.com/

    Google Scholar 

  • Sarles L, Verhaeghe A, Francis F, Verheggen FJ (2015) Semiochemicals of Rhagoletis fruit flies: potential for integrated pest management. Crop Prot 78:114–118. doi:10.1016/j.cropro.2015.09.001

    Article  CAS  Google Scholar 

  • Scheidler NH, Liu C, Hamby KA, Zalom FG, Syed Z (2015) Volatile codes: correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci Rep 5:14059. doi:10.1038/srep14059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamps JA, Yang LH, Morales VM, Boundy-Mills KL (2012) Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS One 7:e42238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starmer W, Aberdeen V (1990) The nutritional importance of pure and mixed cultures of yeasts in the development of Drosophila mulleri larvae in Opuntia tissues and its relationship to host plant shifts. In: Barker JSF, MacIntyre RJ, Starmer WT (eds) Ecological and evolutionary genetics of drosophila. Plenum Press, New York, pp 145–116

    Chapter  Google Scholar 

  • Starmer WT, Fogleman JC (1986) Coadaptation of Drosophila and yeasts in their natural habitat. J Chem Ecol 12:1037–1055. doi:10.1007/bf01638995

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varikou K, Garantonakis N, Birouraki A, Ioannou A, Kapogia E (2016) Improvement of bait sprays for the control of Bactrocera oleae (Diptera: Tephritidae). Crop Prot 81:1–8. doi:10.1016/j.cropro.2015.11.007

    Article  Google Scholar 

  • Vega FE, Dowd PF (2005) the role of yeasts as insect endosymbionts. In: F.E. Vega, M. Blackwell (eds.) Insect-fungal associations: ecology and evolution, Oxford University Press, New York, pp. 211–243

  • Vijaysegaran S, Walter GH, Drew RAI (1997) Mouthpart structure, feeding mechanisms, and natural food sources of adult Bactrocera (Diptera: Tephritidae). Ann Entomol Soc Am 90:184–201. doi:10.1093/aesa/90.2.184

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. A Guide Methods Appl 18:315–322

  • White IM, Elson-Harris MM (1992) Fruit flies of economic significance: their identification and bionomics. CAB international, Wallingford

  • Witzgall P et al (2012) “this is not an apple” -yeast mutualism in codling moth. J Chem Ecol 38:949–957. doi:10.1007/s10886-012-0158-y

    Article  PubMed  Google Scholar 

  • Yamada R, Deshpande SA, Bruce KD, Mak EM, William WJ (2015) Microbes promote amino acid harvest to rescue undernutrition in Drosophila. Cell Rep 10:865–872

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Plant Biosecurity CRC (CRC3152). We would like to thank Mark Blacket and Linda Semeraro for assistance in the identification of B. tryoni larvae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Paul Cunningham.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Disclosure

The research was supported by the Plant Biosecurity CRC (CRC3152).

Electronic supplementary material

ESM 1

(DOCX 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piper, A.M., Farnier, K., Linder, T. et al. Two Gut-Associated Yeasts in a Tephritid Fruit Fly have Contrasting Effects on Adult Attraction and Larval Survival. J Chem Ecol 43, 891–901 (2017). https://doi.org/10.1007/s10886-017-0877-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0877-1

Keywords

Navigation