Skip to main content

Advertisement

Log in

Characterization of CCDC103 expression profiles: further insights in primary ciliary dyskinesia and in human reproduction

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Propose

To study CCDC103 expression profiles and understand how pathogenic variants in CCDC103 affect its expression profile at mRNA and protein level.

Methods

To increase the knowledge about the CCDC103, we attempted genotype-phenotype correlations in two patients carrying novel homozygous (missense and frameshift) CCDC103 variants. Whole-exome sequencing, quantitative PCR, Western blot, electron microscopy, immunohistochemistry, immunocytochemistry, and immunogold labelling were performed to characterize CCDC103 expression profiles in reproductive and somatic cells.

Results

Our data demonstrate that pathogenic variants in CCDC103 gene negatively affect gene and protein expression in both patients who presented absence of DA on their axonemes. Further, we firstly report that CCDC103 is expressed at different levels in reproductive tissues and somatic cells and described that CCDC103 protein forms oligomers with tissue-specific sizes, which suggests that CCDC103 possibly undergoes post-translational modifications. Moreover, we reported that CCDC103 was restricted to the midpiece of sperm and is present at the cytoplasm of the other cells.

Conclusions

Overall, our data support the CCDC103 involvement in PCD and suggest that CCDC103 may have different assemblies and roles in cilia and sperm flagella biology that are still unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol. 2007;8:880–93.

    Article  CAS  PubMed  Google Scholar 

  2. Mitchison HM, Valente EM. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol. 2017;241(2):294–309.

    Article  PubMed  Google Scholar 

  3. Fawcett D. Cilia and flagella. In: Fawcett D, editor. The cell: biochemistry, physiology, morphology. 2nd ed. Phyladelphia, USA: WB Saunders company; 1981. p. 575–603.

    Google Scholar 

  4. Pereira R, Sá R, Barros A, Sousa M. Major regulatory mechanisms involved in sperm motility. Asian J Androl. 2017;19(1):5–14.

    CAS  PubMed  Google Scholar 

  5. King SM. The dynein microtubule motor. Biochim Biophys Acta (BBA) - Mol Cell Res. 2000;1496(1):60–75.

    Article  CAS  Google Scholar 

  6. Leigh MW, Pittman JE, Carson JL, Ferkol TW, Dell SD, Davis SD, et al. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med. 2009;11:473–87.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jackson CL, Behan L, Collins SA, Goggin PM, Adam EC, Coles JL, et al. Accuracy of diagnostic testing in primary ciliary dyskinesia. Eur Respir J. 2016;47:837–48.

    Article  CAS  PubMed  Google Scholar 

  8. Ishikawa H, Marshall WF. Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol. 2011;12:222–34.

    Article  CAS  PubMed  Google Scholar 

  9. Pereira R, Oliveira J, Sousa M. A molecular approach to sperm immotility in humans: a review. Med Reprod Embriol Clín. 2014;01(1):15–25.

    Google Scholar 

  10. Kurkowiak M, Ziętkiewicz E, Witt M. Recent advances in primary ciliary dyskinesia genetics. J Med Genet. 2015;52:1–9.

    Article  CAS  PubMed  Google Scholar 

  11. Pereira R, Oliveira J, Ferraz L, Barros A, Santos R, Sousa M. Mutation analysis in patients with total sperm immotility. J Assist Reprod Genet. 2015;32(6):893–902.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Panizzi JR, Becker-heck A, Castleman VH, Al-mutairi D, Liu Y, Loges NT, et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 2012;44:714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. King SM, Patel-King RS. The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules. J Biol Chem. 2015;290:7388–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oliveira J, Negrao L, Fineza I, Taipa R, Melo-Pires M, Fortuna AM, et al. New splicing mutation in the choline kinase beta (CHKB) gene causing a muscular dystrophy detected by whole-exome sequencing. J Hum Genet. 2015;60:305–12.

    Article  CAS  PubMed  Google Scholar 

  16. Rutland J, Dewar A, Cox T, Cole P. Nasal brushing for the study of ciliary ultrastructure. J Clin Pathol. 1982;35:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bernardino RL, Alves MG, Oliveira PF. Establishment of primary culture of Sertoli cells. In: Alves MG, Oliveira PF, editors. Sertoli Cells. New York, NY: Springer, Humana Press; 2018. p. 1–8.

    Google Scholar 

  18. Afzelius BA, Srurgess JM. The immotile-cilia syndrome: a microtubule-associated defect. Crit Rev Biochem Mol Biol. 1985;19:63–87.

    Article  CAS  Google Scholar 

  19. Sousa M, Oliveira E, Alves Â, Gouveia M, Figueiredo H, Ferraz L, et al. Ultrastructural analysis of five patients with total sperm immotility. Zygote. 2015;23(6):1–8.

    Article  CAS  Google Scholar 

  20. De Iongh R, Rutland J. Orientation of respiratory tract cilia in patients with primary ciliary dyskinesia, bronchiectasis, and in normal subjects. J Clin Pathol. 1989;42:613–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:2002–7.

    Article  Google Scholar 

  22. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Betts MJ, Russell RB. Amino acid properties and consequences of substitutions. In: Barnes MR, Gray IC, editors. Bioinformatics for Geneticists. New York: John Wiley & Sons, Ltd; 2003. p. 289–316.

    Chapter  Google Scholar 

  24. Venselaar H, Te Beek T A, Kuipers RK, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinforma. 2010;11:548.

    Article  CAS  Google Scholar 

  25. Choksi SP, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development. 2014;141(7):1427–41.

    Article  CAS  PubMed  Google Scholar 

  26. Maurizy C, Quinternet M, Abel Y, Verheggen C, Santo PE, Bourguet M, et al. The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nat Commun. 2018;9(1):2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wayne N, Mishra P, Bolon DN. Hsp90 and client protein maturation. In: Calderwood SK, Prince TL, editors. Molecular chaperones: methods and protocols. Totowa, NJ: Humana Press; 2011. p. 33–44.

    Chapter  Google Scholar 

  28. Mcmanus CJ, Graveley BR, Treisman J, Richter J. RNA structure and the mechanisms of alternative splicing. Curr Opin Genet Dev. 2011;21:373–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thomas J, Morlé L, Soulavie F, Laurençon A, Sagnol S, Durand B. Transcriptional control of genes involved in ciliogenesis: a first step in making cilia. Biol Cell. 2010;102(9):499–513.

    Article  CAS  PubMed  Google Scholar 

  30. Geremek M, Ziętkiewicz E, Bruinenberg M, Franke L, Pogorzelski A, Wijmenga C, et al. Ciliary genes are down-regulated in bronchial tissue of primary ciliary dyskinesia patients. PLoS One. 2014;9(2):e88216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA Targets. Cell. 2005;120(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  32. Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. 2016;17(10):1712.

    Article  CAS  PubMed Central  Google Scholar 

  33. Marcet B, Chevalier B, Luxardi G, Coraux C, Zaragosi L-E, Cibois M, et al. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nat Cell Biol. 2011;13:693–9.

    Article  CAS  PubMed  Google Scholar 

  34. Song R, Walentek P, Sponer N, Klimke A, Lee JS, Dixon G, et al. miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110. Nature. 2014;510(7503):115–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. King SM. Axonemal dynein arms. Cold Spring Harb Perspect Biol. 2016;8(11):a028100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Inaba K. Sperm flagella: comparative and phylogenetic perspectives of protein components Unicellular algae Chlamydomonas. Mol Hum Reprod. 2011;17(8):524–38.

    Article  CAS  PubMed  Google Scholar 

  37. Neely MD, Boekelheide K. Sertoli cell processes have axoplasmic features: an ordered microtubule distribution and an abundant high molecular weight microtubule-associated protein (cytoplasmic dynein). J Cell Biol. 1988;107(5):1767–76.

    Article  CAS  PubMed  Google Scholar 

  38. Blackburn K, Bustamante-Marin X, Yin W, Goshe MB, Ostrowski LE. Quantitative proteomic analysis of human airway cilia identifies previously uncharacterized proteins of high abundance. J Proteome Res. 2017;16(4):1579–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shoemark A, Moya E, Hirst RA, Patel MP, Robson E, Hayward J, et al. A high prevalence CCDC103 p.His154Pro mutation causing primary ciliary dyskinesia is associated with normal diagnostic investigations. Eur Respir J. 2017;50(suppl 61):PA1851.

    Google Scholar 

  40. Matoulkova E, Michalova E, Vojtesek B, Hrstka R. The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012;9(5):563–76.

    Article  CAS  PubMed  Google Scholar 

  41. Sabila M, Kundu N, Deana S, Ullah H. Tyrosine phosphorylation based homo-dimerization of Arabidopsis RACK1A proteins regulates oxidative stress signaling pathways in yeast. Front Plant Sci. 2016;7:176.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mali GR, Yeyati PL, Mizuno S, Dodd DO, Tennant PA, Keighren MA, et al. ZMYND10 functions in a chaperone relay during axonemal dynein assembly. eLife. 2018;7:e34389.https://doi.org/10.7554/eLife.34389.

Download references

Acknowledgments

The authors would like to thank Ana Rita Gonçalves, MSc, Center of Medical Genetics Dr. Jacinto Magalhães (CGMJM-CHUP) for Sanger sequencing samples processing; Ângela Alves, MSc, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP) for technical electron microscopy assistance; Raquel Bernardino, PhD, Tânia Dias, Msc, and Ana Maria, MSc for Sertoli cell culture assistance (ICBAS-UP); Fátima Ferreirinha, MSc (ICBAS-UP) for confocal microscopy assistance; and Rui Fernandes, MSc, Institute of Health Research and Innovation (IBMC/i3S-UP) for immunogold labelling assistance.

Funding

UMIB (Pest-OE/SAU/UI0215/2014) is funded by the National Funds through FCT-Foundation for Science and Technology, and FCT Grant ref.: PD/BD/105767/2014 (R.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pereira.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The authors declare that they have followed all the rules of ethical conduct regarding originality, data processing and analysis, duplicate publication, and biological material.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplemental Video 1

Immunocytochemical detection of CCDC103 from control sperm (SZ) obtained from a confocal Z-stack. CCDC103 is present, with a helix-like shape, at sperm midpiece (green). Sperm flagella stained with axoneme-specific acetylated α-tubulin (red) and nuclei stained with DAPI (blue). (AVI 23 kb)

Supplementary Video 2

(AVI 27 kb)

Supplemental Table S1.

List of primers used in this study. (DOCX 16 kb)

Supplemental File S1.

Immunogold staining (DOCX 1360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, R., Oliveira, M.E., Santos, R. et al. Characterization of CCDC103 expression profiles: further insights in primary ciliary dyskinesia and in human reproduction. J Assist Reprod Genet 36, 1683–1700 (2019). https://doi.org/10.1007/s10815-019-01509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01509-7

Keywords

Navigation