Skip to main content
Log in

A Role of Piperine on Monosodium Urate Crystal-Induced Inflammation—An Experimental Model of Gouty Arthritis

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

In the present study, the anti-inflammatory effect of piperine was investigated on monosodium urate crystal-induced inflammation in mice, an experimental model for gouty arthritis, and compared it with that of the nonsteroidal anti-inflammatory drug, indomethacin. The levels of lysosomal enzymes, lipid peroxidation, tumor necrosis factor-α, and paw volume were increased significantly, and the activities of antioxidant status were in turn decreased in monosodium urate crystal-induced mice, whereas these changes were reverted to near normal levels upon piperine (30 mg/kg b.wt, i.p.) treatment. In vitro, piperine (50/100 ug/ml) suppressed the level of β-glucuronidase and lactate dehydrogenase in monosodium urate crystal-incubated polymorphonuclear leucocytes in concentration-dependent manner when compared to control cells. Thus, the present study clearly indicated that piperine inhibit the monosodium urate crystal-induced inflammation and can be regarded as therapeutic drug for the treatment of acute gouty arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agudelo, C.A., and C.M. Wise. 2001. Gout: Diagnosis, pathogenesis, and clinical manifestations. Current Opinion in Rheumatology 13: 234–239.

    Article  PubMed  CAS  Google Scholar 

  2. Schumacher Jr., H.R. 1996. Crystal-induced arthritis: An overview. The American Journal of Medicine 100: 46S–52S.

    Article  PubMed  CAS  Google Scholar 

  3. Terkelaub, R.A. 2001. Pathogenesis and treatment of crystal-induced inflammation. In Arthritis and allied conditions, 14th ed, ed. W.J. Koopman, 2329–2347. Philadelphia: Lippincott William & Wilkins.

    Google Scholar 

  4. Terkeltaub, R.A., and M.H. Ginsberg. 1988. The inflammatory reaction to crystals. Rheumatic Diseases Clinics of North America 14: 53–64.

    Google Scholar 

  5. Di Giovine, F.S., S.E. Malawista, E. Thornton, and G.W. Duff. 1991. Urate crystals stimulate production of tumour necrosis factor alpha from human blood monocytes and synovial cells: Cytokine mRNA and protein kinetics, and cellular distribution. The Journal of Clinical Investigation 87: 175–181.

    Google Scholar 

  6. Terkeltaub, R. 2004. Pathogenesis and treatment of crystal-induced inflammation. In Arthritis and allied conditions, ed. W.J. Koopman and L.W. Moreland, 2357–2372. Philadelphia, Lippincott: Williams and Wilkins.

    Google Scholar 

  7. Govindarajan, V.S. 1982. Ginger—chemistry technology and quality evaluation: Part 1 CRC. Critical Reviews in Food Science & Nutrition 17: 1–96.

    Article  CAS  Google Scholar 

  8. Pradeep, C.R., and G. Kuttan. 2004. Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. International Immunopharmacology 4: 1795–1803.

    Article  PubMed  CAS  Google Scholar 

  9. Panda, S., and A. Kar. 2003. Piperine lowers the serum concentrations of thyroid hormones, glucose, hepatic 5’D activity in adult male mice. Hormone and Metabolic Research 35: 523.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, S.A., S.S. Hong, and X.H. Han. 2005. Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and anti-depressant like activity. Chemical &Pharmaceutical Bulletin 53: 832.

    Article  CAS  Google Scholar 

  11. Koul, I.B., and A. Kapil. 1993. Evaluation of the liver protective potential of piperine, an active principle of black and white peppers. Planta Medica 59: 413.

    Article  PubMed  CAS  Google Scholar 

  12. Sunila, E.S., and G. Kuttan. 2004. Immunomodulatory and anti-tumour activity of Piper longum Linn, and piperine. Journal of Ethanopharmacology 90: 339.

    Article  CAS  Google Scholar 

  13. Singh, Y.N., and N.N. Singh. 2002. Therapeutic potential of kava in the treatment of anxiety disorders. CNS Drugs 16: 731–743.

    Article  PubMed  Google Scholar 

  14. Pathak, N., and S. Khandelwal. 2006. Modulation of cadmium-induced alterations in murine thymocytes by piperine: Oxidative stress, apoptosis, phenotyping and blastogenesis. Biochemical Pharmacology 72: 486–497.

    Article  PubMed  CAS  Google Scholar 

  15. Bang, J.S., D.H. Oh, H.M. Choi, B.J. Sur, S.L. Lim, J.Y. Kim, H.I. Yang, M.C. Yoo, D.H. Hahm, and K.S. Kim. 2009. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Research & Therapy 11: R49.

    Article  Google Scholar 

  16. Rasool, M., and P. Varalakshmi. 2006. Suppressive effect of Withania somnifera root powder on MSU crystal-induced inflammation—an in vivo and in vitro study. Chemico-Biological Interactions 164(3): 174–180.

    Article  PubMed  CAS  Google Scholar 

  17. King, J. 1965. The hydrolases—acid and alkaline phosphatases. In Practical clinical enzymology, ed. D. Van, 191–208. London: Nostrand Company Limited.

    Google Scholar 

  18. Kawai, Y., and K. Anno. 1971. Mucopolysaccharide-degrading enzymes from the liver of the squad, Ommastrephes slonaipacificus. I. Hyaluronidase. Biochimica et Biophysica Acta 242: 428–436.

    PubMed  CAS  Google Scholar 

  19. Rosenblit, P.D., R.P. Metzyer, and A.N. Wick. 1974. Effect of Streptozotocin diabetes on acid phosphatase and selected glycosidase activities of serum and various rat organs. Proceedings of the Society for Experimental and Biological Medicine 145: 244–247.

    CAS  Google Scholar 

  20. Marhun, D. 1976. Rapid colorimetric assay of β-galactosidase and N-acetyl-β-galactosaminidase in human urine. Clinica Chimica Acta 73: 453–461.

    Article  Google Scholar 

  21. Lowry, O.H., N.J. Rosebrough, A.I. Farr, and R.J. Randall. 1951. Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry 193: 265–275.

    PubMed  CAS  Google Scholar 

  22. Ledwozyw, A., J. Michalak, A. Stepien, and A. Kadziolka. 1986. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clinica Chimica Acta 155: 275–284.

    Article  CAS  Google Scholar 

  23. Hogberg, J., R.E. Larson, A. Kristoferson, and S. Orrenius. 1974. NADPH-dependent reductase solubilised from microsomes of peroxidation and its activity. Biochemical and Biophysical Research Communications 56: 836–842.

    Article  PubMed  CAS  Google Scholar 

  24. Marklund, S.L., and G. Marklund. 1974. Involvement of superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47: 469–474.

    Article  PubMed  CAS  Google Scholar 

  25. Sinha, A.K. 1972. Colorimetric assay of catalase. Analytical Biochemistry 47: 389–394.

    Article  PubMed  CAS  Google Scholar 

  26. Rotruk, J.T., A.L. Pope, H.E. Ganther, A.B. Swanson, D.G. Hafeman, and W.G. Hekstra. 1973. Selenium, biochemical role as a component of glutathione peroxidase purification and assay. Science 179: 588–590.

    Article  Google Scholar 

  27. King, J. 1965. The dehydrogenase or oxidoreductase-lactate dehydrogenase. In Practical clinical enzymology, ed. D. Van, 83–93. London: Nostrand.

    Google Scholar 

  28. Kramer, H.M., and G. Curhan. 2002. The association between gout and nephrolithiasis: The national health and nutrition examination survey III, 1988–1994. American Journal of Kidney Diseases 40: 37–42.

    Article  PubMed  Google Scholar 

  29. Saflna, A., T. Korolenko, G. Mynkina, M. Dushkin, and G. Krasnoselskaya. 1992. Liver and serum lysosomal enzymes activity during zymosan-induced inflammation in mice. Agents and Actions 38(3): 370–375.

    Google Scholar 

  30. Ramprasad, V.R., P. Shanthi, and P. Sachdanandam. 2005. Evaluation of antioxidant effect of Semecarpus anacardium Linn. nut extract on thecomponents of immune system in adjuvant arthritis. Vascular Pharmacology 42: 179–186.

    Article  Google Scholar 

  31. Dhully, J.N., P.H. Raman, A.M. Mujumdar, and S.R. Naik. 1993. Inhibition of lipid peroxidation by piperine during experimental inflammation in rats. Indian Journal of Experimental Biology 31: 443–5.

    Google Scholar 

  32. Srinivasan, K. 2007. Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Critical Reviews in Food Science & Nutrition 47: 735–748.

    Article  CAS  Google Scholar 

  33. Selvendiran, K., P.V. Singh, and K. Baba Krishnan. 2003. Cytoprotective effect of piperine against benzo(a)pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice. Fitoterapia 74: 109–115.

    Article  PubMed  CAS  Google Scholar 

  34. Di Giovine, F.S., G. Nuki, and G.W. Duff. 1988. Tumour necrosis factor in synovial exudates. Annals of the Rheumatic Diseases 47: 768–772.

    Article  PubMed  Google Scholar 

  35. Abramson, S., S.T. Hoffstein, and G. Weissmann. 1982. Superoxide anion generation by human neutrophils exposed to monosodium urate. Arthritis and Rheumatism 25: 174–180.

    Article  PubMed  CAS  Google Scholar 

  36. Liu Bryan, R., and R. Terkeltaub. 2006. Evil humors take their toll as innate immunity makes gouty joints TREM-ble. Arthritis and Rheumatism 54: 383–386.

    Article  PubMed  CAS  Google Scholar 

  37. Wallingford, W.R., and D.T. McCarty. 1971. Differential membronolytic effects of sodium urate and calcium pyro phosphate dihydrate crystals. The Journal of Experimental Medicine 133: 100.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to express their thanks to Mr. Karthikeyan (Faculty, School of Biosciences and Technology, VIT University, India) for his technical assistance in performing HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahaboobkhan Rasool.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabina, E.P., Nagar, S. & Rasool, M. A Role of Piperine on Monosodium Urate Crystal-Induced Inflammation—An Experimental Model of Gouty Arthritis. Inflammation 34, 184–192 (2011). https://doi.org/10.1007/s10753-010-9222-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-010-9222-3

KEY WORDS

Navigation