Skip to main content
Log in

Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An area of 0.6 km2 in the manganese nodule field of the Central Indian Basin was physically disturbed and sediments discharged in the near bottom waters to simulate seabed mining and study its impact on benthic ecosystem. An estimated 2 to 3 tonnes of sedimentary organic carbon (Corg) was resuspended into the water column during a 9-day experiment. The majority of the sediment cores from within the disturbed area and areas towards the south showed a ~30% increase in Corg content as well as an increase in carbon burial rates after disturbance, though with a reduction in carbon/phosphorus ratios. High specific surface area (SSA~25 mg − 1) and low Corg/SSA ratios (mostly <0.5) are typical of deep-sea sediments. The increased Corg values were probably due to the organic matter from dead biota and the migration and redeposition of fine-grained, organic-rich particles. Spatial distribution patterns of Corg contents of cores taken before and after disturbance were used to infer the direction of plume migration and re-sedimentation. A positive relationship was observed between total and labile Corg and macrobenthos density and total bacterial numbers prior to disturbance, whereas a negative relationship was seen after disturbance owing to drastic reduction in the density of macrofauna and bacteria. Overall decrease in labile organic matter, benthic biota and redistribution of organic matter suggest that the commercial mining of manganese nodules may have a significant immediate negative effect on the benthic ecosystem inducing changes in benthic community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, J. Y. (1997). Benthic community response to temporal and spatial gradients in physical disturbance within a deep-sea western boundary region. Deep-Sea Research Part I, 44(1), 39–47.

    Article  Google Scholar 

  • Amos, A. F., & Roels, O. A. (1977). Environmental aspects of manganese nodule mining. Marine Pollution Bulletin, 1, 160–162.

    Google Scholar 

  • Banakar, V. K., Gupta, S. M., & Padmavati, V. K. (1991). Abyssal sediment erosion in the Central Indian Basin: Evidence from radiochemical and radiolarian studies. Marine Geology, 96, 167–173.

    Article  Google Scholar 

  • Berger, W. H., & Herguera, J.C. (1992). Reading the sedimentary record of the ocean’s productivity. In P. G. Falkowski & A. D. Woodhead (Eds.), Primary productivity and biogeochemical cycles in the sea (pp. 455–486). New York: Plenum.

    Google Scholar 

  • Bordoviskiy, O. K. (1965). Accumulation and transportation of organic substances in marine sediments. Marine Geology, 3, 33–114.

    Article  Google Scholar 

  • Borole, D. V. (1993). Late Pleistocene sedimentation in the Central Indian Basin.Deep-Sea Research, Part A, 40, 761–776.

    Article  CAS  Google Scholar 

  • Borowski, C., & Thiel, H. (1996). Indicator Taxa for dominant deep-sea animal groups in their importance for comparative and environmental studies. In International seminar on deep-sea mining technology (pp. C35–C43). Beijing, China.

  • Brockett, T., & Richards, C. Z. (1994). Deep-sea mining simulator for environmental impact studies. Sea Technology, August, 77–81.

  • Buffle, J., De Vitre, R. R., Perret, D., & Leppard, G. G. (1989). Physicochemical characteristics of a colloidal iron phosphate species formed at the oxic-anoxic interface of a eutrophic lake. Geochimica et Cosmochimica Acta, 53, 399–408.

    Article  CAS  Google Scholar 

  • Cowie, G. L., & Hedges, J. I. (1993). A comparison of organic matter sources, diagenesis and preservation in oxic and anoxic coastal sites. Chemical Geology, 107, 447–451.

    Article  Google Scholar 

  • Cronan, D. S. (1980). Underwater minerals. London: Academic.

    Google Scholar 

  • Cronan, D. S. (2000). Handbook of marine mineral deposits. Boca Raton: CRC.

    Google Scholar 

  • Danovaro, R., Fabiano, M., Albertelli, G., & Della Croce, N. (1993). Vertical distribution of meiobenthos in bathyal sediments of the Eastern Mediterranean sea: Relationship with labile organic matter and bacterial biomasses. P. S. Z. N. I. Marine Ecology, 16, 103–116.

    Article  Google Scholar 

  • El Wakeel, S. K., & Riley, J. P. (1957). The determination of organic carbon in marine muds. Journal du Conseil—Conseil International Pour l’Exploration de la Mer, 22, 180–183.

    Google Scholar 

  • Foell, E.J., Schriever, G., Bluhm, H., Borowski, C., Bussau, C., & Hijalmar, T. (1992). Disturbance and Recolonization Experiment in the Abyssal South Pacific Ocean (DISCOL): An update. In Proceedings of offshore technology conference, OTC 6805 (pp. 25–33).

  • Fukushima, T. (1995). Overview Japan deep-sea impact experiment = JET. In Proceedings of 1st ISOPE-ocean mining symposium (pp. 47–53). Tsukuba, Japan.

    Google Scholar 

  • Fukushima, T., Shirayama, Y., & Kuboki, E. (2000). The characteristics of deep-sea epifaunal megabenthos community two years after an artificial rapid deposition event. Publication of Seto Marine Biological Laboratory, 39(1), 17–27.

    Google Scholar 

  • Gage, J. D. (1978). Animals in deep-sea sediments. In Proceedings of Royal Society of Edinburgh (Vol. 768, pp. 77–93).

  • Gage, J. D., & Tyler, P. A. (1992). Deep-sea biology: A natural history of organisms at the deep-sea floor. Cambridge: Cambridge University.

    Google Scholar 

  • Gibbs, R. J. (1977). Transport phases of transition metals in the Amazon and Yukon rivers. Bulletin Geological Society of America, 88, 829–843.

    Article  CAS  Google Scholar 

  • Glasby, G. P. (1977). Marine manganese deposits. Amsterdam: Elsevier.

    Google Scholar 

  • Glasby, G. P. (2000). Lessons learned from deep-sea mining. Science, 289, 551–553.

    Article  CAS  Google Scholar 

  • Gupta, S. M. (2000). Biostratigraphic analysis of the top layer of sediment cores from the reference and test sites of the INDEX area. Marine Georesources & Geotechnology, 18, 259–262.

    Google Scholar 

  • Hedges, J. I., & Keil, R. G. (1999). Organic geochemical perspectives on estuarine process: sorption reactions and consequences. Marine Chemistry, 65, 55–65.

    Article  CAS  Google Scholar 

  • Hedges, J. I., Hu, F. S., Devol, A. H., Hartnett, H. E., Tsamakis, E., & Keil, R. G. (1999). Sedimentary organic matter preservation: A test for selective degradation under oxic conditions. American Journal of Science, 299, 529–555.

    Article  CAS  Google Scholar 

  • Hobbie, J. E., Daleyet, R. J., & Jasper, S. (1977). Use of nuclepore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology, 33, 1225–1228.

    CAS  Google Scholar 

  • Ingall, E., & Jahnke, R. (1994). Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochimica Cosmochimica Acta, 58, 571–575.

    Article  Google Scholar 

  • Ingall, E., & Jahnke, R. (1997). Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Marine Geology, 139, 219–229.

    Article  CAS  Google Scholar 

  • Ingall, E. D., & Van Capellan, P. (1990). Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments. Geochimica et Cosmochimica Acta, 54, 373–386.

    Article  CAS  Google Scholar 

  • Ingole, B. S., Ansari, Z. A., Rathod, V., & Rodrigues, N. (2001). Response of deep-sea macrobenthos to a small scale environmental disturbance. Deep-Sea Research Part II, 48, 3401–3410.

    Article  Google Scholar 

  • Ingole, B. S., Goltekar, R., Gonsalves, S., & Ansari, Z. A. (2005) Recovery of deep-sea meiofauna after artificial disturbance in the Central Indian Basin. Marine Georesources and Geotechnology, 23, 253–266

    Article  Google Scholar 

  • Jumars, P. A. (1981). Limits in predicting and detecting benthic community responses to manganese nodule mining. Marine Mining, 3, 213–229.

    Google Scholar 

  • Kaneko, T., Maejima, Y., & Teishima, H. (1995). The abundance and vertical distribution of abyssal benthic fauna in the Japan deep-sea impact experiment. In Proceedings of 7th ISOPE conference (pp. 475–480). Honolulu.

  • Keil, R. G., & Hedges, J. I. (1993). Sorption of organic matter to mineral surfaces and the preservation of organic matter in coastal marine sediments. Chemical Geology, 107, 385–388.

    Article  Google Scholar 

  • Koroleff, F., & Grasshoff, K. (1983). Determination of nutrients. In K. Grasshoff, M. Erhardt, & K. Krembling (Eds.), Methods of seawater analysis (2nd ed., pp. 125–188). Weinheim: Verlag Chemie.

    Google Scholar 

  • Mayer, L. M., Rahaim, P. T., Guerim, W., Macko, S. A., Wakling L., & Anderson, F. E. (1985). Biological and granulometric controls on sedimentary organic matter of an intertidal mudflat. Estuarine & Coastal Shelf Science, 20, 491–503.

    Article  CAS  Google Scholar 

  • Mero, J. L. (1965). The mineral resources of the sea. Amsterdam: Elsevier.

    Google Scholar 

  • Morgan, C. L., Odunton, N. A., & Jones, A. T. (1999). Synthesis of environmental impacts of deep seabed mining. Marine Georesources & Geotechnology, 17, 307–356. doi:10.1080/106411999273666.

    Article  CAS  Google Scholar 

  • Müller, P. J., & Mangini, A. (1980). Organic carbon decomposition rates in sediments of the Pacific manganese nodule belt dated by 230Th and 231Pa. Earth and Planetary Science Letters, 51, 94–114.

    Article  Google Scholar 

  • Nath, B. N., & Mudholkar, A. V. (1989). Early diagenetic processes affecting nutrients in the porewaters of Central Indian Ocean Cores. Marine Geology, 86, 57–65.

    Article  CAS  Google Scholar 

  • Nath, B.N., Parthiban, G., Banaulikar, S., & Sarkar, S. (2005). Alterations in geochemical associations in artificially disturbed deep-sea sediments. Marine Georesources & Geotechnology, 23(4), 373–400.

    Article  CAS  Google Scholar 

  • Nath, B. N., Rao, V. P., & Becker, K. P. (1989). Geochemical evidence of terrigenous influence in deep-sea sediments up to 8°S in the Central Indian Basin. Marine Geology, 87, 301–313.

    Article  CAS  Google Scholar 

  • Nath, B. N., Roelandts, I., Sudhakar, M., & Plueger, W. L. (1992). Rare earth element patterns of the Central Indian Basin sediments related to their lithology. Geophysical Research Letters, 19, 1197–1200.

    Article  CAS  Google Scholar 

  • Nath, B.N., & Sharma, R. (2000). Environment and deep-sea mining: A perspective. Marine Georesources & Geotechnology, 18, 285–294.

    Article  Google Scholar 

  • Ozturgut, E., Anderson, G. C., Burns, R. E., Lavelle, J. W., & Swift, S. A. (1978). Deep ocean mining of manganese nodules in the North Pacific: Pre-mining environmental conditions and anticipated mining effects. NOAA TMERL MESA-33, Colorado (US Dept. Commerce, NOAA), 133 pp.

  • Parthiban, G. (2000). Increased particle fluxes at the INDEX site attributable to simulated benthic disturbance. Marine Georesources & Geotechnology, 18, 223–235.

    CAS  Google Scholar 

  • Parulekar, A. H., Harkantra, S. N., Ansari, Z. A., & Matondkar, S. G. P. (1982). Abyssal benthos of the Central Indian Ocean. Deep-Sea Research, 29, 1531–1537.

    Article  Google Scholar 

  • Qasim, S. Z. (1977). Biological productivity of the Indian Ocean. Indian Journal of Marine Sciences, 6, 122–137.

    CAS  Google Scholar 

  • Radziejewska, T., Rockika-Praxmajer, J., & Stoyanova, V. (2001). IOM BIE revisited: Meiobenthos at the IOM BIE site 5 years after the experimental disturbance. In Proceedings of 4th ISOPE-ocean mining symposium (pp. 63–68). Szczecin, Poland.

    Google Scholar 

  • Raghukumar, C., Loka Bharathi, P. A., Ansari, Z. A., Nair, S., Ingole, B., Sheelu, G. et al. (2001). Bacterial standing stock, meiofauna and sediment-nutrient characteristics: Indicators of benthic disturbance in the Central Indian Basin. Deep-Sea Research Part II, 48(16), 3381–3399.

    Article  CAS  Google Scholar 

  • Raghukumar, C., Nath, B. N., Sharma, R., Loka Bharathi, P. A., & Dalal, S. G. (2006) Long-term changes in microbial and biochemical parameters in the Central Indian Basin. Deep-Sea Research Part I, 53, 1695–1717. doi:10.1016/j.dsr.2006.08.003.

    Article  CAS  Google Scholar 

  • Rao, V. P., & Nath, B. N. (1988). Nature, distribution and origin of clay minerals in grain size fractions of sediment samples from the Central Indian Basin. Indian Journal of Marine Sciences, 17, 202–207.

    CAS  Google Scholar 

  • Redfield, A. C., Ketchum, B. H., & Richards, F. A. (1963). The influence of organisms on the composition of seawater. In M. N. Hill (Ed.), The sea (Vol. 2, pp. 26–77). New York: Wiley.

    Google Scholar 

  • Rona, P. A. (2003). Resources of the sea floor. Science, 299, 673–674.

    Article  CAS  Google Scholar 

  • Rüllkötter, J. (2000). Organic matter: The driving force for early diagenesis. In D. H. Schulz, & M. Zabel (Eds.), Marine geochemistry (pp. 129–172). Berlin: Springer.

    Google Scholar 

  • Schenau, S. J., Slomp, C. P., & Delange, G. J. (2000). Phosphogenesis and active phosphorite formation in sediments from the Arabian Sea oxygen minimum zone. Marine Geology, 169, 1–20.

    Article  CAS  Google Scholar 

  • Sharma, R., & Nath, B. N. (1997). Benthic disturbance and monitoring experiment in the Central Indian Ocean Basin. In Proceedings of the second ISOPE ocean mining symposium (pp. 146–153). Seoul, Korea.

  • Sharma, R., Nath, B. N., Valsangkar, A. B., Parthiban, G., Sivakholundu, K. M., & Walker, G. (2000). Benthic disturbance and impact experiments in the Central Indian Ocean Basin. Marine Georesources & Geotechnology, 18, 209–221.

    Article  Google Scholar 

  • Shirayama, Y. (1999) Biological results of the JET Project: An overview. In Proceedings of 3rd ISOPE-ocean mining symposium (pp. 185–190). Goa, India.

    Google Scholar 

  • Shirayama, Y., Fukushima, T., Matsui, T., & Kuboki, E. (2001). The responses of deep-sea benthic organisms to experimental removal of the surface sediment. In Proceedings of 4th ISOPE-ocean mining symposium (pp. 77–81). Szczecin, Poland.

    Google Scholar 

  • Smetacek, V. (1984). The supply of food to the benthos. In M. J. R. Fasham (Ed.), Flow of energy and materials in marine ecosystem: Theory and practice (pp. 517–548). New York: Plenum.

    Google Scholar 

  • Suess, E. (1980). Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature, 288, 260–263.

    Article  CAS  Google Scholar 

  • Thiel, H. (1978). The faunal environment of manganese nodules and aspects of deep-sea time scale. In W. Krumbein (Ed.), In Proceedings of the third international symposium on environmental biogeochemistry (pp. 887–896). Ann Arbor: Ann Arbor Science.

    Google Scholar 

  • Thiel, H., & Forschungsverbund Tiefsee-Umweltschutz (2001). Evaluation of the environmental consequences of polymetallic nodule mining based on the results of the TUSCH Research Association. Deep-Sea Research Part II, 48, 3433–3452.

    Article  CAS  Google Scholar 

  • Tkatchenko, G. G., Radziejewdka, T., Stoyanova, V., Modilitba, I., & Parizek, A. (1997). Benthic impact experiment in the IOM pioneer area: Testing for effects of deep seabed disturbance. In Symposium on benthic disturbance & impact studies (pp. C-55–C-68). Beijing, China.

  • Trask, P. D. (1937). Organic content of recent marine sediments. In P. D. Trask (Ed.), Recent marine sediments (pp. 8–453). Tulsa: AAPG.

    Google Scholar 

  • Trueblood, D. D. (1994). US cruise report for BIE II cruise 1 July 30–September 9, 1993 R/V/ Yuzhmorgeologiya. NOAA Technical Memorandum nos OCRM 4, p. 51.

  • Valsangkar, A. B., Ambre, N. V., & Rodrigues, M. (1999). Sedimentological impacts of INDEX experiment. In Proceedings of the third ISOPE-ocean mining symposium (pp. 131–137). Goa, India.

    Google Scholar 

  • Van Capellan, P., & Ingall, E. D. (1996). Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science, 271, 493–496.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Nagender Nath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, B.N., Khadge, N.H., Nabar, S. et al. Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment. Environ Monit Assess 184, 2829–2844 (2012). https://doi.org/10.1007/s10661-011-2154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2154-z

Keywords

Navigation