Skip to main content
Log in

Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp.

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The role of nitric oxide and reactive oxygen species, molecules indispensable for plant-pathogen signalling, was studied in the Lactuca spp.-Bremia lactucae pathosystem. Using a leaf disc model the translaminar effect of various compounds affecting their metabolism was studied by light microscopy. Time course studies revealed a slowdown in the development of B. lactucae (race BL16) infection structures by rutin (scavenger of reactive nitrogen and oxygen species) and SNP (NO donor) within 48 h post inoculation, followed by a retardation of sporulation. Application of the specific NO scavenger, PTIO, accelerated penetration of B. lactucae but had no further effects on the plant-pathogen interaction. Inhibitors of NO synthase (L-NAME) and nitrate reductase (sodium tungstate) did not influence pathogen development. Our results suggest that drastic change in the NO: hydrogen peroxide ratio seems to determine the pathogen’s fate. NO synthase-like activity significantly increased early after B. lactucae challenge in resistant L. virosa. Confocal laser scanning microscopy revealed the accumulation of nitric oxide in the penetrated cells, pointing to a role in the initiation of the hypersensitive reaction. The tips of germ tubes and appressoria of B. lactucae also accumulated NO, suggesting an essential role for this molecule in penetration of the biotrophic pathogen. Additionally, temporal changes in endogenous levels of rutin and quercetin in extracts from Lactuca spp. leaves will be discussed in connection to their role as part of the antioxidative machinery that influences the plants’ susceptibility/resistance to lettuce downy mildew.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DAF-FM DA:

4-amino-5-(N-methylamino)-2′,7′-difluorofluorescein diacetate

hpi:

hours post inoculation

HR:

hypersensitive response

L-NAME:

NG-nitro-L-arginine-methylester

NOS:

nitric oxide synthase

NR:

nitrate reductase

PTIO:

2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

PV:

primary vesicle

ROS:

reactive oxygen species

RNS:

reactive nitrogen species

SNP:

sodium nitroprusside

SD:

standard deviation

SV:

secondary vesicle

References

  • Arasimowicz, M., & Floryszak-Wieczorek, J. (2007). Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Science, 172, 876–887.

    Article  CAS  Google Scholar 

  • Asai, S., & Yoshioka, H. (2009). Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 22, 619–629.

    Article  CAS  PubMed  Google Scholar 

  • Bethke, P. C., Badger, M. R., & Jones, R. L. (2004). Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell, 16, 332–341.

    Article  CAS  PubMed  Google Scholar 

  • Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91, 179–194.

    Article  CAS  PubMed  Google Scholar 

  • Bolwell, G. P., & Daudi, A. (2009). Reactive oxygen species in plant–pathogen interactions. In L. A. del Río & A. Puppo (Eds.), Reactive oxygen species in plant signalling (pp. 113–133). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Chaki, M., Fernández-Ocaña, A. M., Valderrama, R., Carreras, A., Esteban, F. J., Luque, F., et al. (2009). Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower–mildew interaction. Plant and Cell Physiology, 50, 665–679.

    Article  CAS  Google Scholar 

  • Cooney, R. V., Harwood, P. J., Custer, L. J., & Franke, A. A. (1994). Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environmental Health Perspectives, 102, 460–462.

    Article  CAS  PubMed  Google Scholar 

  • Corpas, F. J., Hayashi, M., Mano, S., Nishimura, M., & Barroso, J. B. (2009). Peroxisomes are required for in vivo nitric oxide (NO) accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiology. doi:10.1104/pp.109.146100.

    PubMed  Google Scholar 

  • De Gara, L., de Pinto, M. C., & Tommasi, F. (2003). The antioxidant systems vis-à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiology and Biochemistry, 41, 863–870.

    Article  Google Scholar 

  • Delledonne, M., Zeier, J., Marocco, A., & Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America, 98, 13454–13459.

    Article  CAS  PubMed  Google Scholar 

  • Delledonne, M., Murgia, I., Ederle, D., Sbicego, P., Biondani, A., Polverari, A., et al. (2002). Reactive oxygen intermediates modulate nitric oxide signalling in the plant hypersensitive disease-resistance response. Plant Physiology and Biochemistry, 40, 605–610.

    Article  CAS  Google Scholar 

  • Delledonne, M., Polverari, A., & Murgia, I. (2003). The functions of nitric oxide-mediated signalling and changes in gene expression during the hypersensitive response. Antioxidants and Redox Signalling, 5, 33–41.

    Article  CAS  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  CAS  PubMed  Google Scholar 

  • Grace, S. C. (2005). Phenolics as antioxidants. In N. Smirnoff (Ed.), Antioxidants and reactive oxygen species in plants (pp. 141–168). Oxford: Blackwell Scientific.

    Chapter  Google Scholar 

  • Hevel, J. M., & Marletta, M. A. (1994). Nitric-oxide synthase assays. Methods in Enzymology, 233, 250–258.

    Article  CAS  PubMed  Google Scholar 

  • Laughton, M. J., Halliwell, B., Evans, P. J., Robin, J., & Hoult, S. (1989). Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochemical Pharmacology, 38, 2859–2865.

    Article  CAS  PubMed  Google Scholar 

  • Lebeda, A., & Pink, D. A. C. (1998). Histological aspects of the response of wild Lactuca spp. and their hybrids, with L. sativa to lettuce downy mildew (Bremia lactucae). Plant Pathology, 47, 723–736.

    Google Scholar 

  • Lebeda, A., & Reinink, K. (1991). Variation in the early development of Bremia lactucae on lettuce cultivars with different levels of field resistance. Plant Pathology, 40, 232–237.

    Article  Google Scholar 

  • Lebeda, A., & Reinink, K. (1994). Histological characterization of resistance in Lactuca saligna to lettuce downy mildew (Bremia lactucae). Physiological and Molecular Plant Pathology, 44, 125–139.

    Article  Google Scholar 

  • Lebeda, A., Pink, D. A. C., & Mieslerová, B. (2001). Host-parasite specificity and defense variability in the Lactuca spp.-Bremia lactucae pathosystem. Journal of Plant Pathology, 83, 25–35.

    CAS  Google Scholar 

  • Lebeda, A., Pink, D. A. C., & Astley, D. (2002). Aspects of the interactions between wild Lactuca spp. and related genera and lettuce downy mildew (Bremia lactucae). In P. T. N. Spencer-Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research (pp. 85–117). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Lebeda, A., Sedlářová, M., Lynn, J., & Pink, D. A. C. (2006). Phenotypic and histological expression of different genetic backgrounds in interactions between lettuce, wild Lactuca spp., L. sativa × L. serriola hybrids and Bremia lactucae. European Journal of Plant Pathology, 115, 431–441.

    Article  Google Scholar 

  • Lebeda, A., Petrželová, I., & Maryška, Z. (2008a). Structure and variation in the wild-plant pathosystem: Lactuca serriola-Bremia lactucae. European Journal of Plant Pathology, 122, 127–146.

    Article  Google Scholar 

  • Lebeda, A., Sedlářová, M., Petřivalský, M., & Prokopová, J. (2008b). Diversity of defence mechanisms in plant-oomycete interactions: a case study of Lactuca spp.-Bremia lactucae. European Journal of Plant Pathology, 122, 71–89.

    Article  Google Scholar 

  • Lebeda, A., Doležalová, I., Křístková, E., Kitner, M., Petrželová, I., Mieslerová, B., et al. (2009). Wild Lactuca germplasm for lettuce breeding: current status, gaps and challenges. Euphytica, 170, 15–34.

    Article  Google Scholar 

  • Miller, E. W., & Chang, C. J. (2007). Fluorescent probes for nitric oxide and hydrogen peroxide in cell signalling. Current Opinion in Chemical Biology, 11, 620–625.

    Article  CAS  PubMed  Google Scholar 

  • Mur, L. A. J., Carver, T. L., & Prats, E. (2006). NO way to live; the various roles of nitric oxide in plant-pathogen interactions. Journal of Experimental Botany, 57, 489–505.

    Article  CAS  PubMed  Google Scholar 

  • Mur, L. A. J., Kenton, P., Lloyd, A. J., Ougham, H., & Prats, E. (2008). The hypersensitive response; the centenary is upon us but how much do we know? Journal of Experimental Botany, 59, 501–520.

    Article  CAS  PubMed  Google Scholar 

  • Norwood, J. M., Crute, I. R., & Lebeda, A. (1981). The location and characteristics of novel sources of resistance to Bremia lactucae Regel (Downy mildew) in wild Lactuca L. species. Euphytica, 30, 659–668.

    Article  Google Scholar 

  • Panstruga, R. (2003). Establishing compatibility between plants and obligate biotrophic pathogens. Current Opinion in Plant Biology, 6, 320–326.

    Article  CAS  PubMed  Google Scholar 

  • Petřivalský, M., Kočířová, J., Sedlářová, M., Piterková, J., Luhová, L., & Lebeda, A. (2007). On the role of nitric oxide in Bremia lactucae pathogenesis on Lactuca sativa. In A. Lebeda & P. T. N. Spencer-Phillips (Eds.), Advances in downy mildew research (Vol. 3, pp. 175–184). Olomouc: Palacký University in Olomouc and JOLA.

    Google Scholar 

  • Phillips, A. J., Anderson, V. L., Robertson, E. J., Secombes, C. J., & van West, P. (2008). New insights into animal pathogenic oomycetes. Trends in Microbiology, 16, 13–19.

    Article  CAS  PubMed  Google Scholar 

  • Piterková, J., Petřivalský, M., Luhová, L., Mieslerová, B., Sedlářová, M., & Lebeda, A. (2009). Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. Molecular Plant Pathology, 10, 501–513.

    Article  PubMed  Google Scholar 

  • Prats, E., Carver, T. L. W., & Mur, L. A. J. (2008). Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis. Research in Microbiology, 159, 476–480.

    Article  CAS  PubMed  Google Scholar 

  • Saito, S., Yamamoto-Katou, A., Yoshioka, H., Doke, N., & Kawakita, K. (2006). Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. Plant Cell Physiology, 47, 689–697.

    Article  CAS  PubMed  Google Scholar 

  • Sedlářová, M., Lebeda, A., & Pink, D. A. C. (2001). The early stages of interaction between effective and non-effective race-specific genes in Lactuca sativa, wild Lactuca spp. and Bremia lactucae (race NL16). Journal of Plant Diseases and Protection, 108, 477–489.

    Google Scholar 

  • Sedlářová, M., Luhová, L., Petřivalský, M., & Lebeda, A. (2007). Localization and metabolism of reactive oxygen species during Bremia lactucae pathogenesis in Lactuca sativa and wild Lactuca spp. Plant Physiology and Biochemistry, 45, 607–616.

    Article  PubMed  Google Scholar 

  • Shetty, N. P., Jørgensen, H. J. L., Jensen, J. D., Collinge, D. B., & Shetty, H. S. (2008). Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology, 121, 267–280.

    Article  CAS  Google Scholar 

  • Stöhr, C., & Ullrich, W. R. (2002). Generation and possible roles of NO in plant roots and their apoplastic space. Journal of Experimental Botany, 53, 2293–2303.

    Article  PubMed  Google Scholar 

  • Tománková, K., Luhová, L., Petřivalský, M., Peč, P., & Lebeda, A. (2006). Biochemical aspects of reactive oxygen species formation in interaction Lycopersicon spp.-Oidium neolycopersici. Physiological and Molecular Plant Pathology, 68, 22–32.

    Article  Google Scholar 

  • Vandelle, E., & Delledonne, M. (2008). Methods for nitric oxide detection during plant–pathogen interactions. Methods in Enzymology, 437, 573–592.

    Article  Google Scholar 

  • Wendehenne, D., Durner, J., & Klessig, D. F. (2004). Nitric oxide: a new player in plant signalling and defence responses. Current Opinion in Plant Biology, 7, 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, I. D., Neill, S. J., & Hancock, J. T. (2008). Nitric oxide synthesis and signalling in plants. Plant, Cell and Environment, 31, 622–631.

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki, H. (2000). Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philosophical Transactions of the Royal Society B: Biological Sciences, 355, 1477–1488.

    Article  CAS  Google Scholar 

  • Yoshioka, H., Asai, S., Yoshioka, M., & Kobayashi, M. (2009). Molecular mechanisms of generation for nitric oxide and reactive oxygen species, and role of the radical burst in plant immunity. Molecules and Cells, 28, 321–329.

    Article  CAS  PubMed  Google Scholar 

  • Zaninotto, F., La Camera, S., Polverari, A., & Delledonne, M. (2006). Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiology, 141, 379–383.

    Article  CAS  PubMed  Google Scholar 

  • Zeier, J., Delledonne, M., Mishina, T., Severi, E., Sonoda, M., & Lamb, C. (2004). Genetic elucidation of nitric oxide signalling in incompatible plant-pathogen interactions. Plant Physiology, 136, 2875–2888.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, N. W., Lindhout, P., Niks, R. E., & Jeuken, M. J. W. (2009). Genetic dissection of Lactuca saligna nonhost resistance to downy mildew at various lettuce developmental stages. Plant Pathology, 58, 923–932.

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Mrs. Danuše Krátká and M.A. Iveta Hnízdová for proceeding of light microscopy samples, and Dr. Brigitte Mauch-Mani (Université de Neuchâtel, Switzerland) for critical reading of the manuscript. Provision of Lactuca virosa seeds by Prof. D. A. C. Pink (Warwick HRI, Warwick University, U.K.) as well as cooperation with Olympus Czech Group (Prague, Czech Republic) is gratefully acknowledged. The work was financed by the Czech Ministry of Education, Youth and Sports (grants No. MSM 6198959215 and 2E08018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Sedlářová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedlářová, M., Petřivalský, M., Piterková, J. et al. Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp.. Eur J Plant Pathol 129, 267–280 (2011). https://doi.org/10.1007/s10658-010-9626-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9626-9

Keywords

Navigation