Skip to main content

Advertisement

Log in

Clostridium Butyricum MIYAIRI 588 Improves High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Rats

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background/Aims

Non-alcoholic fatty liver disease (NAFLD) has become a common liver disease, as its prevalence has increased markedly in recent decades. The aim of the present study was to examine the improving effect of Clostridium butyricum MIYAIRI 588 (CBM588), a probiotic in clinical use for antibiotic-associated diarrhea, against high-fat diet (HFD)-induced fatty liver in rats.

Methods

After feeding HFD or HFD coated with CBM588 (HFD-CBM) for 12 weeks, we evaluated the hepatic mRNA levels related to lipid metabolism, and then assessed the hepatic protein levels of several transcription factors regulating these lipogenic gene expressions.

Results

The HFD-CBM group had decreased accumulation of lipid droplets in the liver compared with the HFD group. The HFD-CBM group had significantly decreased diacylglycerol acyltransferase (DGAT) 2 mRNA in the liver compared with the HFD group, whereas DGAT1 mRNA did not change between the HFD group and the HFD-CBM group. Moreover, the HFD-CBM group had significantly increased hepatic mRNA regulating cholesterol catabolism enzymes and excretion transporters. Correspondingly, the HFD-CBM588 groups had increased hepatic protein levels of peroxisome proliferator-activated receptor α/γ and liver X receptor α compared with the HFD group. The HFD-CBM group had accelerated excretion of total bile acid and non-esterified fatty acid in the feces.

Conclusions

CBM588 intake may have novel potential for improving NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams LA, Angulo P. Recent concepts in non-alcoholic fatty liver disease. Diabet Med. 2005;22:1129–1133.

    Article  PubMed  CAS  Google Scholar 

  2. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321.

    Article  PubMed  Google Scholar 

  3. Adams LA, Angulo P, Lindor KD. Nonalcoholic fatty liver disease. CMAJ. 2005;172:899–905.

    Article  PubMed  Google Scholar 

  4. George J, Liddle C. Nonalcoholic fatty liver disease: pathogenesis and potential for nuclear receptors as therapeutic targets. Mol Pharm. 2008;5:49–59.

    Article  PubMed  CAS  Google Scholar 

  5. Yu S, Rao S, Reddy JK. Peroxisome proliferator-activated receptors, fatty acid oxidation, steatohepatitis and hepatocarcinogenesis. Curr Mol Med. 2003;3:561–572.

    Article  PubMed  CAS  Google Scholar 

  6. Bugianesi E, Gastaldelli A, Vanni E, et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia. 2005;48:634–642.

    Article  PubMed  CAS  Google Scholar 

  7. Kang H, Greenson JK, Omo JT, et al. Metabolic syndrome is associated with greater histologic severity, higher carbohydrate, and lower fat diet in patients with NAFLD. Am J Gastroenterol. 2006;101:2247–2253.

    Article  PubMed  CAS  Google Scholar 

  8. Solga S, Alkhuraishe AR, Clark JM, et al. Dietary composition and nonalcoholic fatty liver disease. Dig Dis Sci. 2004;49:1578–1583.

    Article  PubMed  Google Scholar 

  9. Benno Y, Sawada K, Mitsuoka T. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol. 1984;28:975–986.

    Article  PubMed  CAS  Google Scholar 

  10. Sato R, Tanaka M. Intestinal distribution and intraluminal localization of orally administered Clostridium butyricum in rats. Microbiol Immunol. 1997;41:665–671.

    Article  PubMed  Google Scholar 

  11. Ichikawa H, Kuroiwa T, Inagaki A, et al. Probiotic bacteria stimulate gut epithelial cell proliferation in rats. Dig Dis Sci. 1999;44:2119–2123.

    Article  PubMed  CAS  Google Scholar 

  12. Okamoto T, Sasaki M, Tsujikawa T, et al. Preventive efficacy of butyrate enemas and oral administration of Clostridium butyricum M588 in dextran sodium sulfate-induced colitis in rats. J Gastroenterol. 2000;35:341–346.

    Article  PubMed  CAS  Google Scholar 

  13. Yin L, Laevsky G, Giardina C. Butyrate suppression of colonocyte NFκB activation and cellular proteasome activity. J Biol Chem. 2001;276:44641–44646.

    Article  PubMed  CAS  Google Scholar 

  14. Seki H, Shiohara M, Matsumura T, et al. Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI. Pediatr Int. 2003;45:86–90.

    Article  PubMed  Google Scholar 

  15. Takahashi M, Taguchi H, Yamaguchi H, et al. The effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli O157:H7 infection in mice. FEMS Immunol Med Microbiol. 2004;41:219–226.

    Article  PubMed  CAS  Google Scholar 

  16. Ley RE, Turnbaugh PJ, Klein S, et al. Human gut microbes associated with obesity. Nature. 2006;444:1022–1023.

    Article  PubMed  CAS  Google Scholar 

  17. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031.

    Article  PubMed  Google Scholar 

  18. DiBaise JK, Zhang H, Crowell MD, et al. Gut microbiota and its possible relationship with obesity. Mayo Clin Proc. 2008;83:460–469.

    Article  PubMed  Google Scholar 

  19. Graber CD, O’Neal RM, Rabin ER. Effect of high fat diets on intestinal microflora and serum cholesterol in rats. J Bacteriol. 1965;89:47–51.

    PubMed  CAS  Google Scholar 

  20. Midtvedt T. Microbial bile acid transformation. Am J Clin Nutr. 1974;27:1341–1347.

    PubMed  CAS  Google Scholar 

  21. Hosomi M, Tanida N, Shimoyama T. The role of intestinal bacteria in gallstone formation in animal model. A study on biliary lipid composition and bile acid profiles in bile, small intestinal contents and feces of Clostridium butyricum MIYAIRI No. 588 monocontaminated mice. Gastroenterol Jpn. 1982;17:316–323.

    PubMed  CAS  Google Scholar 

  22. Kobashi K, Takeda Y, Itoh H, et al. Cholesterol-lowering effect of Clostridium butyricum in cholesterol-fed rats. Digestion. 1983;26:173–178.

    Article  PubMed  CAS  Google Scholar 

  23. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.

    PubMed  CAS  Google Scholar 

  24. Suzuki M, Murai T, Yoshimura T, et al. Determination of 3-oxo-Δ4- and 3-oxo-Δ4, 6-bile acids and related compounds in biological fluids of infants with cholestasis by gas chromatography-mass spectrometry. J Chromatogr B. 1997;693:11–21.

    Article  CAS  Google Scholar 

  25. Muto A, Takai H, Unno A, et al. Detection of Δ4-3-oxo-steroid 5β-reductase deficiency by LC-ESI-MS/MS measurement of urinary bile acids. J Chromatogr B. 2012;900:24–31.

    Article  CAS  Google Scholar 

  26. Bach Knudsen KE, Serena A, Canibe N, et al. New insight into butyrate metabolism. Proc Nutr Soc. 2003;62:81–86.

    Google Scholar 

  27. Stone SJ, Myers HM, Watkins SM, et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem. 2003;279:11767–11776.

    Article  PubMed  Google Scholar 

  28. Yamazaki T, Sasaki E, Kakinuma C, et al. Increased very low density lipoprotein secretion and gonadal fat mass in mice overexpressing liver DGAT1. J Biol Chem. 2005;280:21506–21514.

    Article  PubMed  CAS  Google Scholar 

  29. Ressell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–174.

    Article  Google Scholar 

  30. Bravo E, Flora L, Cantafora A, et al. The influence of dietary saturated and unsaturated fat on hepatic cholesterol metabolism and the biliary excretion of chylomicron cholesterol in the rat. Biochim Biophys Acta. 1998;16:134–148.

    Google Scholar 

  31. Shefer S, Nguyen LB, Salen G, et al. Differing effect of cholesterol and taurocholate on steady state hepatic HMG-CoA reductase and cholesterol 7 alpha-hydroxylase activities and mRNA levels in the rat. J Lipid Res. 1992;33:1193–1200.

    PubMed  CAS  Google Scholar 

  32. Dikkers A, Tietge UJ. Biliary cholesterol secretion: more than a simple ABC. World J Gastroenterol. 2010;16:5936–5945.

    PubMed  CAS  Google Scholar 

  33. Figge A, Lammert F, Paigen B, et al. Hepatic overexpression of murine Abcb11 increases hepatobiliary lipid secretion and reduces hepatic steatosis. J Biol Chem. 2004;279:2790–2799.

    Article  PubMed  CAS  Google Scholar 

  34. Sun F, Xie ML, Xue J, et al. Osthol regulates hepatic PPARα-mediated lipogenic gene expression in alcoholic fatty liver murine. Phytomedicine. 2010;17:669–673.

    Article  PubMed  CAS  Google Scholar 

  35. Gavrilova O, Haluzik M, Matsusue K, et al. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem. 2003;278:34268–34276.

    Article  PubMed  CAS  Google Scholar 

  36. Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res. 2005;51:85–94.

    Article  PubMed  CAS  Google Scholar 

  37. Chinetti G, Lestavel S, Bocher V, et al. R-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med. 2001;7:53–58.

    Article  PubMed  CAS  Google Scholar 

  38. Ogata M, Tsujita M, Hossain MA, et al. On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis. 2009;205:413–419.

    Article  PubMed  CAS  Google Scholar 

  39. Kalaany NY, Mangelsdorf DJ. LXRs and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol. 2006;68:159–191.

    Article  PubMed  CAS  Google Scholar 

  40. Trauner M, Halilbasic E. Nuclear receptors as new perspective for the management of liver diseases. Gastroenterology. 2011;140:1120–1125.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the experimental assistance of Ms. Sawako Satoh, Ayako Go, and Noriko Akiyama-Fukushima.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Seo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, M., Inoue, I., Tanaka, M. et al. Clostridium Butyricum MIYAIRI 588 Improves High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Rats. Dig Dis Sci 58, 3534–3544 (2013). https://doi.org/10.1007/s10620-013-2879-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2879-3

Keywords

Navigation