Skip to main content

Advertisement

Log in

Circulating MicroRNAs: A Novel Class of Potential Biomarkers for Diagnosing and Prognosing Central Nervous System Diseases

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

As a class of important endogenous small noncoding RNAs that regulate gene expression at the posttranscriptional level, microRNAs (miRNAs) play a critical role in many physiological and pathological processes. It is believed that miRNAs contribute to the development, differentiation, and synaptic plasticity of the neurons, and their dysregulation has been linked to a series of diseases. MiRNAs exist in the tissues and as circulating miRNAs in several body fluids, including plasma or serum, cerebrospinal fluid, urine, and saliva. There are significant differences between the circulating miRNA expression profiles of healthy individuals and those of patients. Consequently, circulating miRNAs are likely to become a novel class of noninvasive and sensitive biomarkers. Although little is known about the origin and functions of circulating miRNAs at present, their roles in the clinical diagnosis and prognosis of diseases make them attractive markers, particularly for tumors and cardiovascular diseases. Until now, however, there have been limited data regarding the roles of circulating miRNAs in central nervous system (CNS) diseases. This review focuses on the characteristics of circulating miRNAs and their values as potential biomarkers in CNS diseases, particularly in Alzheimer’s disease, Huntington’s disease, multiple sclerosis, schizophrenia, and bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aβ:

β-Side amyloid

AD:

Alzheimer’s disease

AMPA:

α-Amino-3-hydroxyl-5-methyl-4-isoxazole-propionate

BACE1:

β-Side amyloid precursor protein cleaving enzyme 1

BD:

Bipolar disorder

BDNF:

Brain-derived neurotrophic factor

CNS:

Central nervous system

GAP:

GTPase-activating protein

GRIA:

AMPA glutamate receptor subunit

HD:

Huntington’s disease

HTT:

Protein Huntington

JUN:

Jun proto-oncogene

LIMK1:

Lim-domain containing protein kinase 1

miRNA:

MicroRNA

MS:

Multiple sclerosis

NMDA:

N-methyl-d-aspartate

PTPN1:

Protein tyrosine phosphates, nonreceptor type 1

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

REST:

RE1-silencing transcription factor

SPTLC:

Serine palmitoyltransferase long chain

References

  • Alves L, Correia AS, Miguel R, Alegria P, Bugalho P (2012) Alzheimer’s disease: a clinical practice-oriented review. Front Neurol 3:63. doi:10.3389/fneur.2012.00063

    Article  PubMed  Google Scholar 

  • Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008

    Article  PubMed  CAS  Google Scholar 

  • Banerjee D (2011) Recent advances in the pathobiology of Hodgkin’s lymphoma: potential impact on diagnostic, predictive, and therapeutic strategies. Adv Hematol 2011:439–456

    Google Scholar 

  • Barbato C, Giorgi C, Catalanotto C, Cogoni C (2008) Thinking about RNA? MicroRNAs in the brain. Mamm Genome 19:541–551

    Article  PubMed  CAS  Google Scholar 

  • Barber RC (2010) Biomarkers for early detection of Alzheimer disease. J Am Osteopath Assoc 110:S10–S15

    PubMed  Google Scholar 

  • Berk M, Malhi GS, Hallam K, Gama CS, Dodd S, Andreazza AC, Frey BN, Kapczinski F (2009) Early intervention in bipolar disorders: clinical, biochemical and neuroimaging imperatives. J Affect Disord 114:1–13

    Article  PubMed  Google Scholar 

  • Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ, Tran N, Dedova I, Cairns MJ (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17:1156–1168

    Article  PubMed  CAS  Google Scholar 

  • Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ (2010) Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 15:1176–1189

    Article  PubMed  CAS  Google Scholar 

  • Brase JC, Wuttig D, Kuner R, Sultmann H (2010) Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 9:306. doi:10.1186/1476-4598-9-306

    Article  PubMed  CAS  Google Scholar 

  • Chan AW, Kocerha J (2012) The path to microRNA therapeutics in psychiatric and neurodegenerative disorders. Front Genet 3:82. doi:10.3389/fgene.2012.00082

    Article  PubMed  Google Scholar 

  • Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Zen K, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41

    PubMed  CAS  Google Scholar 

  • Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B (2010) Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3:499–506

    Article  PubMed  Google Scholar 

  • Coyle JT (2009) MicroRNAs suggest a new mechanism for altered brain gene expression in schizophrenia. Proc Natl Acad Sci USA 106:2975–2976

    Article  PubMed  CAS  Google Scholar 

  • De Santis G, Ferracin M, Biondani A, Caniatti L, Rosaria Tola M, Castellazzi M, Zagatti B, Battistini L, Borsellino G, Fainardi E, Gavioli R, Negrini M, Furlan R, Granieri E (2010) Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol 226:165–171

    Article  PubMed  Google Scholar 

  • Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, Li Z, Wu Z, Pei G (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259

    Article  PubMed  CAS  Google Scholar 

  • Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384

    Article  PubMed  CAS  Google Scholar 

  • Fagan AM, Perrin RJ (2012) Upcoming candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. Biomark Med 6:455–476

    Article  PubMed  CAS  Google Scholar 

  • Fernandes BS, Gama CS, Cereser KM, Yatham LN, Fries GR, Colpo G, de Lucena D, Kunz M, Gomes FA, Kapczinski F (2011) Brain-derived neurotrophic factor as a state-marker of mood episodes in bipolar disorders: a systematic review and meta-regression analysis. J Psychiatr Res 45:995–1004

    Article  PubMed  Google Scholar 

  • Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Roxe T, Muller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684

    Article  PubMed  CAS  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed  CAS  Google Scholar 

  • Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P, Bjorkqvist M (2011) Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 20:2225–2237

    Article  PubMed  CAS  Google Scholar 

  • Geekiyanage H, Chan C (2011) MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer’s disease. J Neurosci 31:14820–14830

    Article  PubMed  CAS  Google Scholar 

  • Geekiyanage H, Jicha GA, Nelson PT, Chan C (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235:491–496

    Article  PubMed  CAS  Google Scholar 

  • Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Gupta SK, Bang C, Thum T (2010) Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ Cardiovasc Genet 3:484–488

    Article  PubMed  CAS  Google Scholar 

  • Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28:655–661

    Article  PubMed  CAS  Google Scholar 

  • Hansen T, Olsen L, Lindow M, Jakobsen KD, Ullum H, Jonsson E, Andreassen OA, Djurovic S, Melle I, Agartz I, Hall H, Timm S, Wang AG, Werge T (2007) Brain expressed microRNAs implicated in schizophrenia etiology. PLoS ONE 2:e873

    Article  PubMed  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    Article  PubMed  CAS  Google Scholar 

  • Hebert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32:199–206

    Article  PubMed  CAS  Google Scholar 

  • Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA 105:6415–6420

    Article  PubMed  CAS  Google Scholar 

  • Heese K, Akatsu H (2006) Alzheimer’s disease: an interactive perspective. Curr Alzheimer Res 3:109–121

    Article  PubMed  CAS  Google Scholar 

  • Holtzman DM (2011) CSF biomarkers for Alzheimer’s disease: current utility and potential future use. Neurobiol Aging 32:S4–S9

    Article  PubMed  CAS  Google Scholar 

  • Houenou J, Frommberger J, Carde S, Glasbrenner M, Diener C, Leboyer M, Wessa M (2011) Neuroimaging-based markers of bipolar disorder: evidence from two meta-analyses. J Affect Disord 132:344–355

    Article  PubMed  Google Scholar 

  • Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N (2009) Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55:1944–1949

    Article  PubMed  CAS  Google Scholar 

  • Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, Lassmann H, Wekerle H, Hohlfeld R, Meinl E (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132:3342–3352

    Article  PubMed  Google Scholar 

  • Kaushansky N, Eisenstein M, Zilkha-Falb R, Ben-Nun A (2010) The myelin-associated oligodendrocytic basic protein (MOBP) as a relevant primary target autoantigen in multiple sclerosis. Autoimmun Rev 9:233–236

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH (2007) Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci 10:1513–1514

    Article  PubMed  CAS  Google Scholar 

  • Kocerha J, Faghihi MA, Lopez-Toledano MA, Huang J, Ramsey AJ, Caron MG, Sales N, Willoughby D, Elmen J, Hansen HF, Orum H, Kauppinen S, Kenny PJ, Wahlestedt C (2009) MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci USA 106:3507–3512

    Article  PubMed  CAS  Google Scholar 

  • Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50:298–301

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH, Lee SK, Kim M, Roh JK (2011) Altered microRNA regulation in Huntington’s disease models. Exp Neurol 227:172–179

    Article  PubMed  CAS  Google Scholar 

  • Li M, Li J, Ding X, He M, Cheng SY (2010) MicroRNA and cancer. AAPS J 12:309–317

    Article  PubMed  Google Scholar 

  • Mandel M, Gurevich M, Pauzner R, Kaminski N, Achiron A (2004) Autoimmunity gene expression portrait: specific signature that intersects or differentiates between multiple sclerosis and systemic lupus erythematosus. Clin Exp Immunol 138:164–170

    Article  PubMed  CAS  Google Scholar 

  • Mellios N, Huang HS, Baker SP, Galdzicka M, Ginns E, Akbarian S (2009) Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 65:1006–1014

    Article  PubMed  CAS  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    Article  PubMed  CAS  Google Scholar 

  • Oertel-Knochel V, Bittner RA, Knochel C, Prvulovic D, Hampel H (2011) Discovery and development of integrative biological markers for schizophrenia. Prog Neurobiol 95:686–702

    Article  PubMed  Google Scholar 

  • Otaegui D, Baranzini SE, Armananzas R, Calvo B, Munoz-Culla M, Khankhanian P, Inza I, Lozano JA, Castillo-Trivino T, Asensio A, Olaskoaga J, Lopez de Munain A (2009) Differential microRNA expression in PBMC from multiple sclerosis patients. PLoS ONE 4:e6309

    Article  PubMed  Google Scholar 

  • Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28:14341–14346

    Article  PubMed  CAS  Google Scholar 

  • Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, Wong DT (2009) Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15:5473–5477

    Article  PubMed  CAS  Google Scholar 

  • Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, Parker JS, Jin J, Hammond SM (2007) MicroRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8:R27

    Article  PubMed  Google Scholar 

  • Qureshi IA, Mattick JS, Mehler MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35

    Article  PubMed  CAS  Google Scholar 

  • Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil SV, Russo JJ, Sander C, Tuschl T, Kandel E (2009) Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 63:803–817

    Article  PubMed  CAS  Google Scholar 

  • Rong H, Liu TB, Yang KJ, Yang HC, Wu DH, Liao CP, Hong F, Yang HZ, Wan F, Ye XY, Xu D, Zhang X, Chao CA, Shen QJ (2011) MicroRNA-134 plasma levels before and after treatment for bipolar mania. J Psychiatr Res 45:92–95

    Article  PubMed  Google Scholar 

  • Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, Greengard P (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    Article  PubMed  CAS  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Du J, Qi Y, Liang G, Wang T, Li S, Xie S, Zeshan B, Xiao Z (2012) Aberrant expression of serum miRNAs in schizophrenia. J Psychiatr Res 46:198–204

    Article  PubMed  Google Scholar 

  • Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner PF, Busch CJ, Kane C, Hubel K, Dekker F, Hedberg C, Rengarajan B, Drepper C, Waldmann H, Kauppinen S, Greenberg ME, Draguhn A, Rehmsmeier M, Martinez J, Schratt GM (2009) A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 11:705–716

    Article  PubMed  CAS  Google Scholar 

  • Siegel SR, Mackenzie J, Chaplin G, Jablonski NG, Griffiths L (2012) Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 39:6219–6225

    Article  PubMed  CAS  Google Scholar 

  • Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38:323–332

    Article  PubMed  CAS  Google Scholar 

  • Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M, Teng ZQ, Luo Y, Peng J, Bordey A, Jin P, Zhao X (2010) MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28:1060–1070

    Article  PubMed  CAS  Google Scholar 

  • Song KH, Li T, Owsley E, Chiang JY (2010) A putative role of microRNA in regulation of cholesterol 7alpha-hydroxylase expression in human hepatocytes. J Lipid Res 51:2223–2233

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  PubMed  CAS  Google Scholar 

  • van Os J, Rutten BP, Poulton R (2008) Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull 34:1066–1082

    Article  PubMed  Google Scholar 

  • Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Zhang S, Weber J, Baxter D, Galas DJ (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38:7248–7259

    Article  PubMed  CAS  Google Scholar 

  • Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT (2011) Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121:193–205

    Article  PubMed  Google Scholar 

  • Weir DW, Sturrock A, Leavitt BR (2011) Development of biomarkers for Huntington’s disease. Lancet Neurol 10:573–590

    Article  PubMed  CAS  Google Scholar 

  • Wittmann J, Jack HM (2010) Serum microRNAs as powerful cancer biomarkers. Biochim Biophys Acta 1806:200–207

    PubMed  CAS  Google Scholar 

  • Xu J, Zhao J, Evan G, Xiao C, Cheng Y, Xiao J (2012) Circulating microRNAs: novel biomarkers for cardiovascular diseases. J Mol Med (Berl) 90:865–875

    Article  CAS  Google Scholar 

  • Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16:365–371

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Zhao YP, Liu WJ, Dong J, Chen WY, Zhang TP, Chen G, Shu H (2012) Circulating microRNAs in cancer: diagnostic and prognostic significance. Expert Rev Anticancer Ther 12:283–288

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Wah M, Hattingen E, Tumani H (2011) Development of biomarkers for multiple sclerosis as a neurodegenerative disorder. Prog Neurobiol 95:670–685

    Article  PubMed  CAS  Google Scholar 

  • Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M (2010) MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med 124:217–226

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Project of National Science and Technology Support Program in China (2012BAI01B07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Li.

Additional information

Xue-Feng Jin and Ning Wu contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, XF., Wu, N., Wang, L. et al. Circulating MicroRNAs: A Novel Class of Potential Biomarkers for Diagnosing and Prognosing Central Nervous System Diseases. Cell Mol Neurobiol 33, 601–613 (2013). https://doi.org/10.1007/s10571-013-9940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9940-9

Keywords

Navigation