Skip to main content

Advertisement

Log in

MDM2 binding protein, a novel metastasis suppressor

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

MDM2 binding protein (MTBP) is a protein that interacts with oncoprotein murine double minute (MDM2), a major inhibitor of the tumor suppressor p53. Overexpression of MTBP leads to p53-independent cell proliferation arrest, which is in turn blocked by simultaneous overexpression of MDM2. Importantly, reduced expression of MTBP in mice increases tumor metastasis and enhances migratory potential of mouse embryonic fibroblasts regardless of the presence of p53. Clinically, loss of MTBP expression in head and neck squamous cell carcinoma is associated with reduced patient survival, and is shown to serve as an independent prognostic factor when p53 is mutated in tumors. These results indicate the involvement of MTBP in suppressing tumor progression. Our recent findings demonstrate that overexpression of MTBP in human osteosarcoma cells lacking wild-type p53 inhibits metastasis, but not primary tumor growth, when cells are transplanted in femurs of immunocompromised mice. These data indicate that MTBP functions as a metastasis suppressor independent of p53 status. Furthermore, overexpression of MTBP suppresses cell migration and filopodia formation, in part, by inhibiting function of an actin crosslinking protein α-actinin-4. Thus, increasing evidence indicates the significance of MTBP in tumor progression. We summarize published results related to MTBP function and discuss caveats and future directions in this review article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eccles, S. A., & Welch, D. R. (2007). Metastasis: recent discoveries and novel treatment strategies. Lancet, 369, 1742–1757.

    Article  PubMed  CAS  Google Scholar 

  2. Hurst, D. R., & Welch, D. R. (2011). Metastasis suppressor genes at the interface between the environment and tumor cell growth. International Review of Cell and Molecular Biology, 286, 107–180.

    Article  PubMed  CAS  Google Scholar 

  3. Mina, L. A., & Sledge, G. W., Jr. (2011). Rethinking the metastatic cascade as a therapeutic target. Nature Reviews. Clinical Oncology, 8(6), 325–332.

    PubMed  CAS  Google Scholar 

  4. Chen, X., Xu, Z., & Wang, Y. (2011). Recent advances in breast cancer metastasis suppressor 1. The International Journal of Biological Markers, 26(1), 1–8.

    Article  PubMed  Google Scholar 

  5. Steeg, P. S., Ouatas, T., Halverson, D., Palmieri, D., & Salerno, M. (2003). Metastasis suppressor genes: basic biology and potential clinical use. Clinical Breast Cancer, 4(1), 51–62.

    Article  PubMed  CAS  Google Scholar 

  6. Harms, J. F., Welch, D. R., & Miele, M. E. (2003). KISS1 metastasis suppression and emergent pathways. Clinical & Experimental Metastasis, 20(1), 11–18.

    Article  CAS  Google Scholar 

  7. Gao, A. C., Lou, W., Dong, J. T., & Isaacs, J. T. (1997). CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Research, 57(5), 846–849.

    PubMed  CAS  Google Scholar 

  8. Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., et al. (1991). E-cadherin-mediated cell–cell adhesion prevents invasiveness of human carcinoma cells. The Journal of Cell Biology, 113(1), 173–185.

    Article  PubMed  CAS  Google Scholar 

  9. Dong, J. T., Lamb, P. W., Rinker-Schaeffer, C. W., Vukanovic, J., Ichikawa, T., Isaacs, J. T., et al. (1995). KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science, 268(5212), 884–886.

    Article  PubMed  CAS  Google Scholar 

  10. Gildea, J. J., Seraj, M. J., Oxford, G., Harding, M. A., Hampton, G. M., Moskaluk, C. A., et al. (2002). RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Research, 62(22), 6418–6423.

    PubMed  CAS  Google Scholar 

  11. Fujita, H., Okada, F., Hamada, J., Hosokawa, M., Moriuchi, T., Koya, R. C., et al. (2001). Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect. International Journal of Cancer, 93(6), 773–780.

    Article  CAS  Google Scholar 

  12. Vander Griend, D. J., Kocherginsky, M., Hickson, J. A., Stadler, W. M., Lin, A., & Rinker-Schaeffer, C. W. (2005). Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Research, 65(23), 10984–10991.

    Article  PubMed  CAS  Google Scholar 

  13. Steeg, P. S., de la Rosa, A., Flatow, U., MacDonald, N. J., Benedict, M., & Leone, A. (1993). Nm23 and breast cancer metastasis. Breast Cancer Research and Treatment, 25(2), 175–187.

    Article  PubMed  CAS  Google Scholar 

  14. Fu, Z., Smith, P. C., Zhang, L., Rubin, M. A., Dunn, R. L., Yao, Z., et al. (2003). Effects of Raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. Journal of the National Cancer Institute, 95(12), 878–889.

    Article  PubMed  CAS  Google Scholar 

  15. Barbero, S., Mielgo, A., Torres, V., Teitz, T., Shields, D. J., Mikolon, D., et al. (2009). Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis. Cancer Research, 69(9), 3755–3763.

    Article  PubMed  CAS  Google Scholar 

  16. Ohta, S., Lai, E. W., Pang, A. L., Brouwers, F. M., Chan, W. Y., Eisenhofer, G., et al. (2005). Downregulation of metastasis suppressor genes in malignant pheochromocytoma. International Journal of Cancer, 114(1), 139–143.

    Article  CAS  Google Scholar 

  17. Seraj, M. J., Samant, R. S., Verderame, M. F., & Welch, D. R. (2000). Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Research, 60(11), 2764–2769.

    PubMed  CAS  Google Scholar 

  18. Goldberg, S. F., Miele, M. E., Hatta, N., Takata, M., Paquette-Straub, C., Freedman, L. P., et al. (2003). Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Research, 63(2), 432–440.

    PubMed  CAS  Google Scholar 

  19. Rinker-Schaeffer, C. W., O’Keefe, J. P., Welch, D. R., & Theodorescu, D. (2006). Metastasis suppressor proteins: discovery, molecular mechanisms, and clinical application. Clinical Cancer Research, 12(13), 3882–3889.

    Article  PubMed  CAS  Google Scholar 

  20. Iwakuma, T., & Lozano, G. (2003). MDM2, an introduction. Molecular Cancer Research, 1(14), 993–1000.

    PubMed  CAS  Google Scholar 

  21. Lu, M. L., Wikman, F., Orntoft, T. F., Charytonowicz, E., Rabbani, F., Zhang, Z., et al. (2002). Impact of alterations affecting the p53 pathway in bladder cancer on clinical outcome, assessed by conventional and array-based methods. Clinical Cancer Research, 8(1), 171–179.

    PubMed  CAS  Google Scholar 

  22. Bouska, A., & Eischen, C. M. (2009). Murine double minute 2: p53-independent roads lead to genome instability or death. Trends in Biochemical Sciences, 34(6), 279–286.

    Article  PubMed  CAS  Google Scholar 

  23. Cordon-Cardo, C., Latres, E., Drobnjak, M., Oliva, M. R., Pollack, D., Woodruff, J. M., et al. (1994). Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Research, 54(3), 794–799.

    PubMed  CAS  Google Scholar 

  24. Bouska, A., Lushnikova, T., Plaza, S., & Eischen, C. M. (2008). Mdm2 promotes genetic instability and transformation independent of p53. Molecular and Cellular Biology, 28(15), 4862–4874.

    Article  PubMed  CAS  Google Scholar 

  25. Carroll, P. E., Okuda, M., Horn, H. F., Biddinger, P., Stambrook, P. J., Gleich, L. L., et al. (1999). Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene, 18(11), 1935–1944.

    Article  PubMed  CAS  Google Scholar 

  26. Lundgren, K., de Oca, M., Luna, R., McNeill, Y. B., Emerick, E. P., Spencer, B., Barfield, C. R., et al. (1997). Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes & Development, 11(6), 714–725.

    Article  CAS  Google Scholar 

  27. Jones, S. N., Hancock, A. R., Vogel, H., Donehower, L. A., & Bradley, A. (1998). Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 95(26), 15608–15612.

    Article  PubMed  CAS  Google Scholar 

  28. Boyd, M. T., Vlatkovic, N., & Haines, D. S. (2000). A novel cellular protein (MTBP) binds to MDM2 and induces a G1 arrest that is suppressed by MDM2. Journal of Biological Chemistry, 275(41), 31883–31890.

    Article  PubMed  CAS  Google Scholar 

  29. Boyd, M. T., Zimonjic, D. B., Popescu, N. C., Athwal, R., & Haines, D. S. (2000). Assignment of the MDM2 binding protein gene (MTBP) to human chromosome band 8q24 by in situ hybridization. Cytogenetics and Cell Genetics, 90(1–2), 64–65.

    PubMed  CAS  Google Scholar 

  30. Brady, M., Vlatkovic, N., & Boyd, M. T. (2005). Regulation of p53 and MDM2 activity by MTBP. Molecular and Cellular Biology, 25(2), 545–553.

    Article  PubMed  CAS  Google Scholar 

  31. Agarwal, N., Tochigi, Y., Adhikari, A. S., Cui, S., Cui, Y., & Iwakuma, T. (2011). MTBP plays a crucial role in mitotic progression and chromosome segregation. Cell Death and Differentiation, 18(7), 1208–1219.

    Article  PubMed  CAS  Google Scholar 

  32. Odvody, J., Vincent, T., Arrate, M. P., Grieb, B., Wang, S., Garriga, J., et al. (2010). A deficiency in Mdm2 binding protein inhibits Myc-induced B-cell proliferation and lymphomagenesis. Oncogene, 29(22), 3287–3296.

    Article  PubMed  CAS  Google Scholar 

  33. Iwakuma, T., Tochigi, Y., Van Pelt, C. S., Caldwell, L. C., Terzian, T., Parant, J. M., et al. (2008). MTBP haploinsufficiency in mice increases tumor metastasis. Oncogene, 27(13), 1813–1820.

    Article  PubMed  CAS  Google Scholar 

  34. Agarwal, N., Adhikari, A. S., Iyer, S. V., Hekmatdoost, K., Welch, D. R., & Iwakuma, T. (2012). MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene. doi:10.1038/onc.2012.69.

  35. Yamaguchi, H., Wyckoff, J., & Condeelis, J. (2005). Cell migration in tumors. Current Opinion in Cell Biology, 17(5), 559–564.

    Article  PubMed  CAS  Google Scholar 

  36. Mattila, P. K., & Lappalainen, P. (2008). Filopodia: molecular architecture and cellular functions. Nature Reviews Molecular Cell Biology, 9(6), 446–454.

    Article  PubMed  CAS  Google Scholar 

  37. Lindberg, U., Karlsson, R., Lassing, I., Schutt, C. E., & Hoglund, A. S. (2008). The microfilament system and malignancy. Seminars in Cancer Biology, 18(1), 2–11.

    Article  PubMed  CAS  Google Scholar 

  38. Kirfel, G., Rigort, A., Borm, B., & Herzog, V. (2004). Cell migration: mechanisms of rear detachment and the formation of migration tracks. European Journal of Cell Biology, 83(11–12), 717–724.

    Article  PubMed  Google Scholar 

  39. Ammer, A. G., & Weed, S. A. (2008). Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motility and the Cytoskeleton, 65(9), 687–707.

    Article  PubMed  CAS  Google Scholar 

  40. Barbolina, M. V., Adley, B. P., Kelly, D. L., Fought, A. J., Scholtens, D. M., Shea, L. D., et al. (2008). Motility-related actinin alpha-4 is associated with advanced and metastatic ovarian carcinoma. Laboratory Investigation, 88(6), 602–614.

    Article  PubMed  CAS  Google Scholar 

  41. Hendrix, M. J., Seftor, E. A., Chu, Y. W., Trevor, K. T., & Seftor, R. E. (1996). Role of intermediate filaments in migration, invasion and metastasis. Cancer and Metastasis Reviews, 15(4), 507–525.

    Article  PubMed  CAS  Google Scholar 

  42. Vignjevic, D., & Montagnac, G. (2008). Reorganisation of the dendritic actin network during cancer cell migration and invasion. Seminars in Cancer Biology, 18(1), 12–22.

    Article  PubMed  CAS  Google Scholar 

  43. Choi, H. S., Yim, S. H., Xu, H. D., Jung, S. H., Shin, S. H., Hu, H. J., et al. (2010). Tropomyosin3 overexpression and a potential link to epithelial-mesenchymal transition in human hepatocellular carcinoma. BMC Cancer, 10, 122.

    Article  PubMed  Google Scholar 

  44. Mierke, C. T. (2009). The role of vinculin in the regulation of the mechanical properties of cells. Cell Biochemistry and Biophysics, 53(3), 115–126.

    Article  PubMed  CAS  Google Scholar 

  45. Honda, K., Yamada, T., Endo, R., Ino, Y., Gotoh, M., Tsuda, H., et al. (1998). Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. The Journal of Cell Biology, 140(6), 1383–1393.

    Article  PubMed  CAS  Google Scholar 

  46. Quick, Q., & Skalli, O. (2010). Alpha-actinin 1 and alpha-actinin 4: contrasting roles in the survival, motility, and RhoA signaling of astrocytoma cells. Experimental Cell Research, 316(7), 1137–1147.

    Article  PubMed  CAS  Google Scholar 

  47. Honda, K., Yamada, T., Hayashida, Y., Idogawa, M., Sato, S., Hasegawa, F., et al. (2005). Actinin-4 increases cell motility and promotes lymph node metastasis of colorectal cancer. Gastroenterology, 128(1), 51–62.

    Article  PubMed  CAS  Google Scholar 

  48. Kikuchi, S., Honda, K., Tsuda, H., Hiraoka, N., Imoto, I., Kosuge, T., et al. (2008). Expression and gene amplification of actinin-4 in invasive ductal carcinoma of the pancreas. Clinical Cancer Research, 14(17), 5348–5356.

    Article  PubMed  CAS  Google Scholar 

  49. Yamamoto, S., Tsuda, H., Honda, K., Onozato, K., Takano, M., Tamai, S., et al. (2009). Actinin-4 gene amplification in ovarian cancer: a candidate oncogene associated with poor patient prognosis and tumor chemoresistance. Modern Pathology, 22(4), 499–507.

    Article  PubMed  CAS  Google Scholar 

  50. Sen, S., Dong, M., & Kumar, S. (2009). Isoform-specific contributions of alpha-actinin to glioma cell mechanobiology. PLoS One, 4(12), e8427.

    Article  PubMed  Google Scholar 

  51. Weins, A., Schlondorff, J. S., Nakamura, F., Denker, B. M., Hartwig, J. H., Stossel, T. P., et al. (2007). Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16080–16085.

    Article  PubMed  CAS  Google Scholar 

  52. Vlatkovic, N., El-Fert, A., Devling, T., Ray-Sinha, A., Gore, D. M., Rubbi, C. P., et al. (2011). Loss of MTBP expression is associated with reduced survival in a biomarker-defined subset of patients with squamous cell carcinoma of the head and neck. Cancer, 117(13), 2939–2950.

    Article  PubMed  CAS  Google Scholar 

  53. Carrasco, D. R., Tonon, G., Huang, Y., Zhang, Y., Sinha, R., Feng, B., et al. (2006). High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell, 9(4), 313–325.

    Article  PubMed  CAS  Google Scholar 

  54. Martin, E. S., Tonon, G., Sinha, R., Xiao, Y., Feng, B., Kimmelman, A. C., et al. (2007). Common and distinct genomic events in sporadic colorectal cancer and diverse cancer types. Cancer Research, 67(22), 10736–10743.

    Article  PubMed  CAS  Google Scholar 

  55. Jonkers, Y. M., Claessen, S. M., Perren, A., Schmid, S., Komminoth, P., Verhofstad, A. A., et al. (2005). Chromosomal instability predicts metastatic disease in patients with insulinomas. Endocrine-Related Cancer, 12(2), 435–447.

    Article  PubMed  CAS  Google Scholar 

  56. Bhattacharya, A., Roy, R., Snijders, A. M., Hamilton, G., Paquette, J., Tokuyasu, T., et al. (2011). Two distinct routes to oral cancer differing in genome instability and risk for cervical node metastasis. Clinical Cancer Research, 17(22), 7024–7034.

    Article  PubMed  CAS  Google Scholar 

  57. Gutenberg, A., Gerdes, J. S., Jung, K., Sander, B., Gunawan, B., Bock, H. C., et al. (2010). High chromosomal instability in brain metastases of colorectal carcinoma. Cancer Genetics and Cytogenetics, 198(1), 47–51.

    Article  PubMed  CAS  Google Scholar 

  58. Pinto, M., Vieira, J., Ribeiro, F. R., Soares, M. J., Henrique, R., Oliveira, J., et al. (2008). Overexpression of the mitotic checkpoint genes BUB1 and BUBR1 is associated with genomic complexity in clear cell kidney carcinomas. Cellular Oncology, 30(5), 389–395.

    PubMed  CAS  Google Scholar 

  59. Wang, X., Cheung, H. W., Chun, A. C., Jin, D. Y., & Wong, Y. C. (2008). Mitotic checkpoint defects in human cancers and their implications to chemotherapy. Frontiers in Bioscience, 13, 2103–2114.

    Article  PubMed  CAS  Google Scholar 

  60. Grabsch, H., Takeno, S., Parsons, W. J., Pomjanski, N., Boecking, A., Gabbert, H. E., et al. (2003). Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer—association with tumour cell proliferation. The Journal of Pathology, 200(1), 16–22.

    Article  PubMed  CAS  Google Scholar 

  61. Hisaoka, M., Matsuyama, A., & Hashimoto, H. (2008). Aberrant MAD2 expression in soft-tissue sarcoma. Pathology International, 58(6), 329–333.

    Article  PubMed  Google Scholar 

  62. Bakhoum, S. F., Danilova, O. V., Kaur, P., Levy, N. B., & Compton, D. A. (2011). Chromosomal instability substantiates poor prognosis in patients with diffuse large B-cell lymphoma. Clinical Cancer Research, 17(24), 7704–7711.

    Article  PubMed  CAS  Google Scholar 

  63. Gjoerup, O. V., Wu, J., Chandler-Militello, D., Williams, G. L., Zhao, J., Schaffhausen, B., et al. (2007). Surveillance mechanism linking Bub1 loss to the p53 pathway. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 8334–8339.

    Article  PubMed  CAS  Google Scholar 

  64. Rao, C. V., Yamada, H. Y., Yao, Y., & Dai, W. (2009). Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis, 30(9), 1469–1474.

    Article  PubMed  CAS  Google Scholar 

  65. Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., Lowe, S. W., et al. (2007). MAD2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 11(1), 9–23.

    Article  PubMed  CAS  Google Scholar 

  66. Michel, L. S., Liberal, V., Chatterjee, A., Kirchwegger, R., Pasche, B., Gerald, W., et al. (2001). MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature, 409(6818), 355–359.

    Article  PubMed  CAS  Google Scholar 

  67. Iwanaga, Y., Chi, Y. H., Miyazato, A., Sheleg, S., Haller, K., Peloponese, J. M., Jr., et al. (2007). Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Research, 67(1), 160–166.

    Article  PubMed  CAS  Google Scholar 

  68. Dobles, M., Liberal, V., Scott, M. L., Benezra, R., & Sorger, P. K. (2000). Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein MAD2. Cell, 101(6), 635–645.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Swathi V. Iyer, Qian Bi, and Keke Pounds for editing the manuscript. This work was supported by grants from American Cancer Society RSG-09-169-01-CSM (T.I) and University of Kansas Medical Center start-up (T.I.).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoo Iwakuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwakuma, T., Agarwal, N. MDM2 binding protein, a novel metastasis suppressor. Cancer Metastasis Rev 31, 633–640 (2012). https://doi.org/10.1007/s10555-012-9364-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9364-x

Keywords

Navigation