Skip to main content
Log in

Reaction Time in a Visual 4-Choice Reaction Time Task: ERP Effects of Motor Preparation and Hemispheric Involvement

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Reaction time (RT), the most common measure of CNS efficiency, shows intra- and inter-individual variability. This may be accounted for by hemispheric specialization, individual neuroanatomy, and transient functional fluctuations between trials. To explore RT on these three levels, ERPs were measured in a visual 4-choice RT task with lateralized stimuli (left lateral, left middle, right middle, and right lateral) in 28 healthy right-handed subjects. We analyzed behavioral data, ERP microstates (MS), N1 and P3 components, and trial-by-trial variance. Across subjects, the N1 component was contralateral to the stimulation side. N1-MSs were stronger over the left hemisphere, and middle stimulation evoked stronger activation than lateral stimulation in both hemispheres. The P3 was larger for the right visual field stimulation. RTs were shorter for the right visual hemifield stimulation/right hand responses. Within subjects, covariance analysis of single trial ERPs with RTs showed consistent lateralized predictors of RT over the motor cortex (MC) in the 112–248 ms interval. Decreased RTs were related to negativity over the MC contralateral to the stimulation side, an effect that could be interpreted as the lateralized readiness potential (LRP), and which was strongest for right side stimulation. The covariance analysis linking individual mean RTs and individual mean ERPs showed a frontal negativity and an occipital positivity correlating with decreased RTs in the 212–232 ms interval. We concluded that a particular RT is a composite measure that depends on the appropriateness of the motor preparation to a particular response and on stimulus lateralization that selectively involves a particular hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aglioti S, Berlucchi G, Pallini R, Rossi GF, Tassinari G (1993) Hemispheric control of unilateral and bilateral responses to lateralized light stimuli after callosotomy and in callosal agenesis. Exp Brain Res 95(1):151–165

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Jäncke L, Mohlberg H, Steinmetz H, Zilles K (2000) Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia 38(3):304–312

    Article  CAS  PubMed  Google Scholar 

  • Annett M, Annett J (1979) Individual differences in right and left reaction time. Br J Psychol 70(3):393–404

    Article  CAS  PubMed  Google Scholar 

  • Barthelemy S, Boulinguez P (2001) Manual reaction time asymmetries in human subjects: the role of movement planning and attention. Neurosci Lett 315(1–2):41–44

    Article  CAS  PubMed  Google Scholar 

  • Basso D, Vecchi T, Kabiri LA, Baschenis I, Boggiani E, Bisiacchi PS (2006) Handedness effects on interhemispheric transfer time: a TMS study. Brain Res Bull 70(3):228–232

    Article  PubMed  Google Scholar 

  • Bestelmeyer PEG, Carey DP (2004) Processing biases towards the preferred hand: valid and invalid cueing of left-versus right-hand movements. Neuropsychologia 42(9):1162–1167

    Article  PubMed  Google Scholar 

  • Bocci T, Pietrasanta M, Caleo M, Sartucci F (2014) Visual callosal connections: role in visual processing in healthy and disease. Rev Neurosci 25(1):113–127

    Article  PubMed  Google Scholar 

  • Boy F, Sumner P (2014) Visibility predicts priming within but not between people: a cautionary tale for studies of cognitive individual differences. J Exp Psychol Gen 143(3):1011–1025

    Article  PubMed  Google Scholar 

  • Büchel C, Raedler T, Sommer M, Sach M, Weiller C, Koch MA (2004) White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 14(9):945–951

    Article  PubMed  Google Scholar 

  • Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126(9):2093–2107

    Article  PubMed  Google Scholar 

  • Corballis MC (2014) Left brain, right brain: facts and fantasies. PLoS Biol 12(1):e1001767. doi:10.1371/journal.pbio.1001767

    Article  PubMed  PubMed Central  Google Scholar 

  • Crow TJ, Chance SA, Priddle TH, Radua J, James AC (2013) Laterality interacts with sex across schizophrenia/bipolarity continuum: an interpretation of meta-analyses of structural MRI. Psychiatry Res 210(3):1232–1244

    Article  PubMed  Google Scholar 

  • Donchin E (1981) Presidential address, 1980. Surprise!… Surprise? Psychophysiology 18(5):493–513

    Article  CAS  PubMed  Google Scholar 

  • Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11(3):357–374

    Article  Google Scholar 

  • Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD (1997) Space-based and object-based visual attention: shared and specific neural domains. Brain 120(11):2013–2028

    Article  PubMed  Google Scholar 

  • Frecska E, Symer C, White K, Piscani K, Kulcsar Z (2004) Perceptional and executive deficits of chronic schizophrenic patients in attentional and intentional tasks. Psychiatry Res 126(1):63–75

    Article  PubMed  Google Scholar 

  • Friedman D (1984) P300 and slow wave: the effects of reaction time quartile. Biol Psychol 18(1):49–71

    Article  CAS  PubMed  Google Scholar 

  • Fu S, Fedota JR, Greenwood PM, Parasuraman R (2010) Dissociation of visual C1 and P1 components as a function of attention load: an event-related potential study. Biol Psychol 85(1):171–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Gajewski PD, Stoerig P, Falkenstein M (2008) ERP: correlates of response selection in a response conflict paradigm. Brain Res 1189:127–134

    Article  CAS  PubMed  Google Scholar 

  • Gazzaniga M (2000) Cerebral specialization and interhemispheric communication. Brain 123(7):1293–1326

    Article  PubMed  Google Scholar 

  • Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, Mesulam MM (1999) A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioral and cognitive controls. Brain 122(6):1093–1106

    Article  PubMed  Google Scholar 

  • Hackley SA, Schankin A, Wohlschlaerger A, Wascher E (2007) Localization of temporal preparation effects via trisected reaction time. Psychophysiology 44(2):334–338

    Article  PubMed  Google Scholar 

  • Han S, Weaver JA, Murray SO, Kang X, Yund EW, Woods DL (2002) Hemispheric asymmetry in global/local processing: effects of stimulus position and spatial frequency. NeuroImage 17(3):1290–1299

    Article  PubMed  Google Scholar 

  • Heim S, Eulitz C, Elbert T (2003a) Altered hemispheric asymmetry of auditory N100m in adults with developmental dyslexia. NeuroReport 14(3):501–504

    Article  PubMed  Google Scholar 

  • Heim S, Eulitz C, Elbert T (2003b) Altered hemispheric asymmetry of auditory P100m in dyslexia. Eur J Neurosci 17(8):1715–1722

    Article  PubMed  Google Scholar 

  • Heinze HJ, Luck SJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalogr Clin Neurophysiol 75(6):511–527

    Article  CAS  PubMed  Google Scholar 

  • Herbert MR, Harris GJ, Adrien KT, Ziegler DA, Makris N, Kennedy DN, Lange NT, Chabris CF, Bakardjiev A, Hodgson J, Takeoka M, Tager-Flusberg H, Caviness VS (2002) Abnormal asymmetry in language association cortex in autism. Ann Neurol 52(5):588–596

    Article  PubMed  Google Scholar 

  • Herbert MR, Ziegler DA, Deutsch K, O’Brien LM, Kennedy DN, Filipek PA, Bakardjiev AI, Hodgson J, Takeoka M, Makris N, Caviness VS Jr (2005) Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain 128(Pt 1):213–226

    CAS  PubMed  Google Scholar 

  • Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci USA 95(3):781–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillyard SA, Kutas M (1983) Electrophysiology of cognitive processing. Annu Rev Psychol 34:33–61

    Article  CAS  PubMed  Google Scholar 

  • Iacoboni M, Zaidel E (1995) Channels of the corpus callosum: evidence from simple reaction times to lateralized flashes in the normal and the split brain. Brain 118(Pt 3):779–788

    Article  PubMed  Google Scholar 

  • Iacoboni M, Fried I, Zaidel E (1994) Callosal transmission time before and after partial commissurotomy. NeuroReport 5(18):2521–2524

    Article  CAS  PubMed  Google Scholar 

  • Ipata A, Girelli M, Miniussi C, Marzi CA (1997) Interhemispheric transfer of visual information in humans: the role of different callosal channels. Arch Ital Biol 135(2):169–182

    CAS  PubMed  Google Scholar 

  • Jenner AR, Rosen GD, Galaburda AM (1999) Neuronal asymmetries in primary visual cortex of dyslexic and nondyslexic brains. Ann Neurol 46(2):189–196

    Article  CAS  PubMed  Google Scholar 

  • Johannes S, Münte TF, Heinze HJ, Mangun GR (1995) Luminance and spatial attention effects on early visual processing. Brain Res Cogn Brain Res 2(3):189–205

    Article  CAS  PubMed  Google Scholar 

  • Kalyanshetti SB, Vastrad BC (2013) Effect of handedness on visual, auditory and cutaneous reaction times in normal subjects. Al Ameen J Med Sci 6(3):278–280

    Google Scholar 

  • Kelly SP, O’Connell RG (2013) Internal and external influences on the rate of sensory evidence accumulation in the human brain. J Neurosci 33(50):19434–19441

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam MM (1999) The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. NeuroImage 9(3):269–277

    Article  CAS  PubMed  Google Scholar 

  • Klein RM (2000) Inhibition of return. Trends Cogn Sci 4(4):138–147

    Article  PubMed  Google Scholar 

  • Koenig T, Melie-García L (2010) A method to determine the presence of averaged event-related fields using randomization tests. Brain Topogr 23(3):233–242

    Article  PubMed  Google Scholar 

  • Koenig T, Melie-García L, Stein M, Strik W, Lehmann C (2008) Establishing correlations of scalp field maps with other experimental variables using covariance analysis and resampling methods. Clin Neurophysiol 119(6):1262–1270

    Article  PubMed  Google Scholar 

  • Koenig T, Kottlow M, Stein M, Melie García L (2011) Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Comput Intell Neurosci. doi:10.1155/2011/938925

    PubMed  PubMed Central  Google Scholar 

  • Koenig T, Stein M, Grieder M, Kottlow M (2014) A tutorial on data-driven methods for statistically assessing ERP topographies. Brain Topogr 27(1):72–83

    Article  PubMed  Google Scholar 

  • Kolev V, Falkenstein M, Yordanova J (2006) Motor-response generation as a source of aging-related behavioral slowing in choice-reaction task. Neurobiol Aging 27:1719–1730

    Article  PubMed  Google Scholar 

  • Konrad A, Vucurevic G, Musso F, Stoeter P, Winterer G (2009) Correlation of brain white matter diffusion anisotropy and mean diffusivity with reaction time in an oddball task. Neuropsychobiology 60(2):55–66

    Article  PubMed  Google Scholar 

  • Leuthold H (2011) The Simon effect in cognitive electrophysiology: a short review. Acta Psychol (Amst) 136(2):203–211

    Article  Google Scholar 

  • Liu Z, Zhang N, Chen W, He B (2009) Mapping the bilateral visual integration by EEG and fMRI. NeuroImage 46(4):989–997

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo YC, Soong WT, Gau SSF, Wu YY, Lai MC, Yeh FC, Chiang WY, Kuo LW, Jaw FS, Tseng WY (2011) The loss of asymmetry and reduced interhemispheric connectivity in adolescents with autism: a study using diffusion spectrum imaging tractography. Psychiatry Res 192(1):60–66

    Article  PubMed  Google Scholar 

  • Løberg EM, Hugdahl K, Green MF (1999) Hemispheric asymmetry in schizophrenia: a “Dual deficits” model. Biol Psychiatry 45(1):76–81

    Article  PubMed  Google Scholar 

  • Luck SJ, Heinze HJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr Clin Neurophysiol 75(6):528–542

    Article  CAS  PubMed  Google Scholar 

  • Madden DJ, Whiting WL, Huettel SA, White LE, MacFall JR, Provenzale JM (2004) Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. NeuroImage 21(3):1174–1181

    Article  PubMed  Google Scholar 

  • Madsen KS, Baaré WFC, Skimminge A, Vestergaard M, Siebner HR, Jernigan TL (2011) Brain microstructural correlates of visuospatial choice reaction time in children. NeuroImage 58(4):1090–1100

    Article  PubMed  Google Scholar 

  • Mangun GR, Hillyard SA (1991) Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J Exp Psychol Hum Percept Perform 17(4):1057–1074

    Article  CAS  PubMed  Google Scholar 

  • Marzi CA (1999) The Poffenberger paradigm: a first, simple, behavioral tool to study interhemispheric transmission in humans. Brain Res Bull 50(5–6):421–422

    Article  CAS  PubMed  Google Scholar 

  • Marzi CA, Bisiacchi P, Nicoletti R (1991) Is interhemispheric transfer of visuomotor information asymmetric?: evidence from a meta-analysis. Neuropsychologia 29(12):1163–1177

    Article  CAS  PubMed  Google Scholar 

  • Masaki H, Wild-Wall N, Sangals J, Sommer W (2004) The functional locus of the lateralized readiness potential. Psychophysiology 41(2):220–230

    Article  PubMed  Google Scholar 

  • Mooshagian E, Iacoboni M, Zaidel E (2008) The role of task history in simple reaction time to lateralized light flashes. Neuropsychologia 46(2):659–664

    Article  PubMed  Google Scholar 

  • Mooshagian E, Iacoboni M, Zaidel E (2009) Spatial attention and interhemispheric visuomotor integration in the absence of the corpus callosum. Neuropsychologia 47(3):933–937

    Article  PubMed  Google Scholar 

  • Murray MM, Foxe JJ, Higgins BA, Javitt DC, Schroeder CE (2001) Visuo-spatial neural response interactions in early cortical processing during a simple reaction time task: a high-density electrical mapping study. Neuropsychologia 39(8):828–844

    Article  CAS  PubMed  Google Scholar 

  • Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264

    Article  PubMed  Google Scholar 

  • Nielsen JA, Zielinski BA, Ferguson MA, Lainhart JE, Anderson JS (2013) An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging. PLoS One 8(8):e71275. doi:10.1371/journal.pone.0071275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RSJ, Frith CD (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120(Pt 3):515–533

    Article  PubMed  Google Scholar 

  • Nobre AC, Sebestyen GN, Miniussi C (2000) The dynamics of shifting visuospatial attention revealed by event-related potentials. Neuropsychologia 38(7):964–974

    Article  CAS  PubMed  Google Scholar 

  • O’Connell RG, Dockree PM, Kelly SP (2012) A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nat Neurosci 15(12):1729–1735

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburg inventory. Neuropsychologia 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  • Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in Human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6(5):661–672

    Article  CAS  PubMed  Google Scholar 

  • Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nervous centers. Arch Psychol 23:1–73

    Google Scholar 

  • Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148

    Article  PubMed  PubMed Central  Google Scholar 

  • Praamstra P (2006) Prior information of stimulus location: effects on ERP measures of visual selection and response selection. Brain Res 1072(1):153–160

    Article  CAS  PubMed  Google Scholar 

  • Praamstra P, Oostenveld R (2003) Attention and movement-related motor cortex activation: a high density EEG study of spatial stimulus–response compatibility. Brain Res Cogn Brain Res 16(3):309–322

    Article  CAS  PubMed  Google Scholar 

  • Ramchurn A, de Fockert JW, Mason L, Darling S, Bunce D (2014) Intraindividual reaction time variability affects P300 amplitude rather than latency. Front Hum Neurosci 8:557. doi:10.3389/fnhum.2014.00557

    Article  PubMed  PubMed Central  Google Scholar 

  • Roth WT, Ford JM, Kopell BS (1978) Long-latency evoked potentials and reaction time. Psychophysiology 15(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Sack AT, Camprodon JA, Pascual-Leone A, Goebel R (2005) The dynamics of interhemispheric compensatory processes in mental imagery. Science 308(5722):702–704

    Article  CAS  PubMed  Google Scholar 

  • Saron CD, Davidson RJ (1989) Visual evoked potential measures of interhemispheric transfer time in humans. Behav Neurosci 103(5):1115–1138

    Article  CAS  PubMed  Google Scholar 

  • Saville CWN, Dean RO, Daley D, Intriligator J, Boehm S, Feige B, Klein C (2011) Electrocortical correlates of intra-subject variability in reaction time: average and single-trial analyses. Biol Psychol 87(1):74–83

    Article  PubMed  Google Scholar 

  • Schluter ND, Rushworth MFS, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements: a study using transcranial magnetic stimulation. Brain 121(Pt 5):785–799

    Article  PubMed  Google Scholar 

  • Sharma T, Lancaster E, Sigmundsson T, Lewis S, Takei N, Gurling H, Barta P, Pearlson G, Murray R (1999) Lack of normal pattern of cerebral asymmetry in familial schizophrenic patients and their relatives: the Maudsley Family Study. Schizophr Res 40(2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Sheremata SL, Bettencourt KC, Somers DC (2010) Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load. J Neurosci 30(38):12581–12588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spironelli C, Penolazzi B, Angrilli A (2008) Dysfunctional hemispheric asymmetry of theta and beta EEG activity during linguistic tasks in developmental dyslexia. Biol Psychol 77(2):123–131

    Article  PubMed  Google Scholar 

  • Steel C, Hemsley DR, Pickering AD (2002) Distractor cueing effects on choice reaction time and their relationship with schizotypal personality. Br J Clin Psychol 41(Pt 2):143–156

    Article  CAS  PubMed  Google Scholar 

  • Stephan KE, Marshall JC, Friston KJ, Rowe JB, Ritzl A, Zilles K, Fink GR (2003) Lateralized cognitive processes and lateralized task control in the human brain. Science 301(5631):384–386

    Article  CAS  PubMed  Google Scholar 

  • Sternberg S (1969) The discovery of processing stages: extension of Donders’ method. Acta Psychol 30:276–315

    Article  Google Scholar 

  • Störmer V, McDonald JJ, Hillyard SA (2009) Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli. Proc Natl Acad Sci USA 106(52):22456–22461

    Article  PubMed  PubMed Central  Google Scholar 

  • Suchan B, Zoppelt D, Daum I (2003) Frontocentral negativity in electroencephalogram reflects motor response evaluation in humans on correct trials. Neurosci Lett 350(2):101–104

    Article  CAS  PubMed  Google Scholar 

  • Suchan B, Jokisch D, Skotara N, Daum I (2007) Evaluation-related frontocentral negativity evoked by correct responses and errors. Behav Brain Res 183(2):206–212

    Article  PubMed  Google Scholar 

  • Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DGM, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14(10):1245–1246

    Article  CAS  PubMed  Google Scholar 

  • Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Tommasi L (2009) Mechanisms and functions of brain and behavioral asymmetries. Philos Trans R Soc Lond B Biol Sci 364(1519):855–859

    Article  PubMed  Google Scholar 

  • Tuch DS, Salat DH, Wisco JJ, Zaleta AK, Havelone ND, Rosas HD (2005) Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc Natl Acad Sci USA 102(34):12212–12217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verleger R (1997) On the utility of P3 latency as an index of mental chronometry. Psychophysiology 34(2):131–156

    Article  CAS  PubMed  Google Scholar 

  • Verleger R (2008) P3b: towards some decision about memory. Clin Neurophysiol 119(4):968–970

    Article  PubMed  Google Scholar 

  • Verleger R, Jaśkowski P, Wascher E (2005) Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol 19(3):165–181

    Article  Google Scholar 

  • Verleger R, Baur N, Metzner MF, Śmigasiewicz K (2014a) The hard oddball: effects of difficult response selection on stimulus-related P3 and on response-related negative potentials. Psychophysiology 51(11):1089–1100

    Article  PubMed  Google Scholar 

  • Verleger R, Metzner MF, Ouyang G, Śmigasiewicz K, Zhou C (2014b) Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE). NeuroImage 100:271–280

    Article  PubMed  Google Scholar 

  • Vogel EK, Luck SJ (2000) The visual N1 component as an index of a discrimination process. Psychophysiology 37(2):190–203

    Article  CAS  PubMed  Google Scholar 

  • Walhovd KB, Fjell AM (2007) White matter volume predicts reaction time instability. Neuropsychologia 45(10):2277–2284

    Article  PubMed  Google Scholar 

  • Wascher E, Hoffmann S, Sänger J, Grosjean M (2009) Visuo-spatial processing and the N1 components of the ERP. Psychophysiology 46(6):1270–1277

    Article  PubMed  Google Scholar 

  • Weintraub S, Mesulam MM (1987) Right cerebral dominance in spatial attention: further evidence based on ipsilateral neglect. Arch Neurol 44(6):621–625

    Article  CAS  PubMed  Google Scholar 

  • Westerhausen R, Kreuder F, Woerner W, Huster RJ, Smit CM, Schweiger E, Wittling W (2006) Interhemispheric transfer time and structural properties of the corpus callosum. Neurosci Lett 409(2):140–145

    Article  CAS  PubMed  Google Scholar 

  • Whitford TJ, Kubicki M, Ghorashi S, Schneiderman JS, Hawley KJ, McCarley RW, Shenton ME, Spencer KM (2011) Predicting inter-hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients: a combined ERP and DTI study. NeuroImage 54(3):2318–2329

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I. A. acknowledges support from the following sources: “Promotion of Student Scientific Activities” (VP1-3.1-ŠMM-01-V-02-003) from the Research Council of Lithuania, funded by the Republic of Lithuania and the European Social Fund under the 2007–2013 Human Resources Development Operational Programme’s priority 3. SCIEX-NMS Scientific Exchange Programme between Switzerland and the New Member States of the EU, Project 13.048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrida Antonova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonova, I., van Swam, C., Hubl, D. et al. Reaction Time in a Visual 4-Choice Reaction Time Task: ERP Effects of Motor Preparation and Hemispheric Involvement. Brain Topogr 29, 491–505 (2016). https://doi.org/10.1007/s10548-016-0473-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-016-0473-7

Keywords

Navigation