Skip to main content
Log in

Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) in Brassica juncea: cross-talk between ROS, NO and antioxidant responses

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Research on NO in plants has achieved huge attention in recent years mainly due to its function in plant growth and development under biotic and abiotic stresses. In the present study, we investigated Cd induced NO generation and its relationship to ROS and antioxidant regulation in Brassica juncea. Cd accumulated rapidly in roots and caused oxidative stress as indicated by increased level of lipid peroxidation and H2O2 thus, inhibiting the overall plant growth. It significantly decreased the root length, leaf water content and photosynthetic pigments. A rapid induction in intracellular NO was observed at initial exposures and low concentrations of Cd. A 2.74-fold increase in intracellular NO was recorded in roots treated with 25 μM Cd than control. NO effects on Malondialdehyde (MDA) content and on antioxidant system was investigated by using sodium nitroprusside (SNP), a NO donor and a scavenger, [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide] (cPTIO). Roots pretreated with 5 mM SNP for 6 h when exposed to 25 μM Cd for 24 h reduced the level of proline, non-protein thiols, SOD, APX and CAT in comparison to only Cd treatments. However, this effect was almost blocked by 100 μM cPTIO pretreatment to roots for 1 h. This ameliorating effect of NO was specific because cPTIO completely reversed the effect in the presence of Cd. Thus, the present study report that NO strongly counteracts Cd induced ROS mediated cytotoxicity in B. juncea by controlling antioxidant metabolism as the related studies are not well reported in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

NPT:

Non-protein thiol

SOD:

Superoxide dismutase

APX:

Ascorbate peroxidase

CAT:

Catalase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

References

  • Aebi H (1974) Catalases. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press Inc., New York, p 680

    Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gwóźdź EA (2011) The message of nitric oxide in cadmium challenged plants. Plant Sci 181:612–620

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenol oxidases in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Bartha B, Kolbert Z, Erdei L (2005) Nitric oxide production induced by heavy metals in Brassica juncea L. Czern. and Pisum sativum L. Acta Biol Szeged 49:9–12

    Google Scholar 

  • Bates LS, Wadern RP, Teare ID (1973) Rapid estimation of free proline for water stress determination. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bates SS, Tessier A, Campbell PGC, Buffle J (1982) Zinc adsorption and transport by Chlamydomonas variabilis and Scenedesmus subspicatus (Chlorophyceae) grown in semicontinuous culture. J Phycol 18:521–529

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by ROS in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou J-P, Pugin A, Wendehenne D (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    Article  PubMed  CAS  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford

    Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  • Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant Microb Interact 13:1380–1384

    Article  CAS  Google Scholar 

  • De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, Sanita di Toppi L, Schiavo FL (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150:217–228

    Article  PubMed  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Google Scholar 

  • De Vos CHR, Schat H, Vooijs R, Ernst WHO (1989) Copper-induced damage to the permeability barrier in roots of Silene cucubalus. J Plant Physiol 135:164–179

    Article  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Dube BK, Sinha P, Shukla K, Chatterjee C, Pandey VK, Rai AD (2009) Involvement of excess cadmium on oxidative stress and other physiological parameters of eggplant. J Plant Nutr 32:996–1004

    Article  CAS  Google Scholar 

  • Dubovskaya LV, Kolesneva EV, Knyazev DM, Volotovskii ID (2007) Protective role of nitric oxide during hydrogen peroxide induced oxidative stress in tobacco plants. Russ J Plant Physiol 54:755–762

    Article  CAS  Google Scholar 

  • Elviri L, Speroni F, Careri M, Mangia A, di Toppi LS, Zottini M (2010) Identification of in vivo nitrosylated phytochelatins in Arabidopsis thaliana cells by liquid chromatography-direct electrospray-linear ion trap-mass spectrometry. J Chromatogr A 1217:4120–4126

    Article  PubMed  CAS  Google Scholar 

  • Foissner I, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Foyer C, Lopez-Delgado H, Dat J, Scott I (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Garcia-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Gouia H, Suzuki A, Brulfert J, Ghorbal H (2004) Effect of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. Plant Physiol 160:367–376

    Google Scholar 

  • Gropa MD, Rosales EP, Lannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    Article  Google Scholar 

  • Guo TR, Zhang GP, Zhou MX (2004) Effects of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant Soil 258:241–248

    Article  CAS  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  PubMed  CAS  Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Jana S, Choudhuri MA (1981) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354

    Article  Google Scholar 

  • Kavi KPB, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Köhl KI, Lösch R (1999) Experimental characterization of heavy metal tolerances in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants. Springer, Berlin, pp 370–389

    Google Scholar 

  • Kopyra M, Gwózdz EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effects of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Kopyra M, Stachon-Wilk M, Gwozdz EA (2006) Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cell suspension. Acta Physiol Plant 28:525–536

    Article  CAS  Google Scholar 

  • Laloi CH, Apel K, Danon A (2004) Reactive oxygen signaling: the latest news. Curr Opin Plant Biol 7:323–328

    Article  PubMed  CAS  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Lefèvre I, Marchal G, Meerts P, Corréal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65:142–152

    Article  Google Scholar 

  • Liu D, Zou J, Meng Q, Zou J, Wusheng J (2009) Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 18:134–143

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenberg NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Luo BF, Du ST, Lu KX, Liu WJ, Lin XY, Jin CW (2012) Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. J Exp Bot 63:3127–3136

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes JR, Pedroso MC, Durzan D (1999) Nitric oxide, apoptosis and plant stress. Physiol Mol Biol Plant 5:115–125

    Google Scholar 

  • Matysik J, Alia BB, Mohanty P (2002) Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govinda Rajan R, Kuriakosesv Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  PubMed  CAS  Google Scholar 

  • Murphy ME, Noack E (1994) Nitric oxide assay using hemoglobin method. Methods Enzymol 233:241–250

    Google Scholar 

  • Neill SJ, Desikan R, Hancock J (2003) Nitric oxide signaling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Ona LF, Alberto AM, Prudente JA, Sigua GC (2006) Levels of lead in urban soils from selected cities in a central region of the Philippines. Environ Sci Pollut Res 13:177–183

    Article  CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavaddeur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  PubMed  CAS  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin ex Steudel. Plant Physiol 133:829–837

    Article  PubMed  CAS  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487

    Article  PubMed  CAS  Google Scholar 

  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608

    Article  CAS  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, del Río LA, Sandalio LM (2009) Cellular responses of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide and calcium. Plant Physiol 150:229–243

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  PubMed  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gomez M, Del Rio LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Responses to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Schützendübel A, Polle A (2002) Cadmium and H2O2 induced oxidative stress in Populus x canescens roots. Plant Physiol Biochem 40:577–584

    Article  Google Scholar 

  • Schutzendubel A, Schwanz P, Teichmann T, Gross K, Lanhenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative system, hydrogen peroxide content and differentiation in scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  CAS  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound and non protein sulphydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  • Sharma SS, Dietz K-J (2008) The relationship between metal toxicity and cellular redox balance. Trends Plant Sci 14:43–50

    Article  PubMed  Google Scholar 

  • Shekhawat GS, Verma K, Jana S, Singh K, Teotia P, Prasad A (2009) In vitro biochemical evaluation of cadmium tolerance mechanism in callus and seedlings of Brassica juncea. Protoplasma 239:31–38

    Article  Google Scholar 

  • Sidlecka A, Baszynsky T (1993) Inhibition of electron flow around photosystem I in chloroplasts of cadmium-treated maize plants in due to cadmium-induced iron deficiency. Physiol Plant 87:199–202

    Article  Google Scholar 

  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167

    Article  CAS  Google Scholar 

  • Uera RB, Paz-Alberto AM, Sigua GC (2007) Phytoremediation potentials of selected tropical plants for ethidium bromide. Environ Sci Pollut Res 14:505–509

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Verma K, Shekhawat GS, Sharma A, Mehta SK, Sharma V (2008) Cadmium induced oxidative stress and changes in soluble and ionically bound cell wall peroxidase activities in roots of seedling and 3–4 leaf stage plants of Brassica juncea (L.) Czern. Plant Cell Rep 27:1261–1269

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-S, Yang Z-M (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    Article  PubMed  CAS  Google Scholar 

  • Wang X-F, Zhou Q-X (2005) Ecotoxicological effects of cadmium on three ornamental plants. Chemosphere 60:16–21

    Article  PubMed  CAS  Google Scholar 

  • Wendehenne D, Pugin A, Klessing DF, Durner J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–186

    Article  PubMed  CAS  Google Scholar 

  • Wildt J, Kley D, Rockel P, Segschneider HJ (1997) Emission of NO from several higher plant species. J Geophys Res 102:5919–5927

    Article  CAS  Google Scholar 

  • Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci U S A 90:9813–9817

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Fu G, Tao L, Zhu C (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys 497:13–20

    Article  PubMed  CAS  Google Scholar 

  • Yu CC, Hung KT, Kao CH (2005) Nitric oxide reduces Cu toxicity and Cu induced NH4+ accumulation in rice leaves. J Plant Physiol 162:1319–1330

    Article  PubMed  CAS  Google Scholar 

  • Zhao LQ, Zhang F, Guo JK, Yang YG, Li BB, Zhang LX (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  PubMed  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks are given to Professor Aditya Shastri, Vice chancellor, Banasthali University, Rajasthan, India for his kind cooperation. This work was supported by Council of Scientific and Industrial Research funding organization (CSIR) of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kusum Verma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, K., Mehta, S.K. & Shekhawat, G.S. Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) in Brassica juncea: cross-talk between ROS, NO and antioxidant responses. Biometals 26, 255–269 (2013). https://doi.org/10.1007/s10534-013-9608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9608-4

Keywords

Navigation