Skip to main content
Log in

Bioinformatics Analysis of NBS-LRR Encoding Resistance Genes in Setaria italica

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

In plants, resistance (R) genes are involved in pathogen recognition and subsequent activation of innate immune responses. The nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes family forms the largest R-gene family among plant genomes and play an important role in plant disease resistance. In this paper, comprehensive analysis of NBS-encoding genes is performed in the whole Setaria italica genome. A total of 96 NBS-LRR genes are identified, and comprehensive overview of the NBS-LRR genes is undertaken, including phylogenetic analysis, chromosome locations, conserved motifs of proteins, and gene expression. Based on the domain, these genes are divided into two groups and distributed in all Setaria italica chromosomes. Most NBS-LRR genes are located at the distal tip of the long arms of the chromosomes. Setaria italica NBS-LRR proteins share at least one nucleotide-biding domain and one leucine-rich repeat domain. Our results also show the duplication of NBS-LRR genes in Setaria italica is related to their gene structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ameline TC, Wang BB, O’Bleness MS (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:5–21

    Article  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:202–208

    Article  Google Scholar 

  • Bella JKL, Hindle PA, McEwan SC (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65:2307–2333

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Young ND (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol 54(4):548–562

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Jiang H, Zhao Y (2010) A genomic analysis of disease-resistance genes encoding nucleotide binding sites in Sorghum bicolor. Genet Mol Biol 33:292–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • David MG, Shu S, Russell H, Rochak N, Richard DH, Joni F, Therese M, William D, Hellsten Uffe, Nicholas P, Daniel SR (2012) Phytozome: a comparatve platform for green plant genomics. Nucl. Acids Res 40:1178–1186

    Article  Google Scholar 

  • Delorenzi M, Speed T (2002) An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics 18:617–625

    Article  CAS  PubMed  Google Scholar 

  • Ellis J, Jones D (1998) Structure and function of proteins controlling strainspecific pathogen resistance in plant. Curr Opin Plant Biol 1:288–293

    Article  CAS  PubMed  Google Scholar 

  • Enkhbayar P, Kamiya M, Osaki M, Matsumoto T, Matsushima N (2004) Structural principles of leucine-rich repeat (LRR) proteins. Proteins 54:394–403

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36:281–288

    Article  Google Scholar 

  • Frank LWT, Mario A, Wladimir ILT (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9:383–390

    Article  Google Scholar 

  • Kanazin V, Mareck L, Shoemaker P (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732

    Article  CAS  PubMed  Google Scholar 

  • Kohler A, Rinaldi C, Duplessis S (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li P, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot 62:3031–3037

    Article  CAS  PubMed  Google Scholar 

  • Marchler BA, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C (2009) CDD: specific functional annota-tion with the conserved domain database. Nucleic Acids Res 37:205–210

    Article  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the function of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotech 21:178–183

    Article  CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in arabidopsis. Plant Cell 15:809–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Q, Wendel J, Fluhr R (2000a) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. Mol Evol 50:203–213

    CAS  Google Scholar 

  • Pan QL, Liu YS, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000b) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panwar P, Jha AK, Pandey PK, Gupta AK, Kumar A (2011) Functional markers based molecular characterization and cloning of resistance gene analogs encoding NBS-LRR disease resistance proteins in finger millet (Eleusine coracana). Mol Biol Rep 38:3427–3436

    Article  CAS  PubMed  Google Scholar 

  • Renier ALH, Sophien K (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    Article  Google Scholar 

  • Richly E, Kurth J, Leister D (2002) Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 19(1):76–84

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van OG, Mayr G, Kasiem MM, Albrecht M, Cornelissen BJ, Takken FL (2008) Structure- function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot 59:1383–1397

    Article  Google Scholar 

  • Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271:402–415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by National Key Technologies R&DP Program of China (2014ZX0800909B), National Key Technologies R&DP Program of China (2011BAD06B01), Hebei province science and technology support program (13226326), Major Projects Foundation of Hebei North University (ZD201305 and ZD201407), and The Selection and Training Program of Higher Academic Talents of HeBei Province (BR2-234)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghui Liu.

Additional information

Yan Zhao and Qiaoyun Weng have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Weng, Q., Song, J. et al. Bioinformatics Analysis of NBS-LRR Encoding Resistance Genes in Setaria italica . Biochem Genet 54, 232–248 (2016). https://doi.org/10.1007/s10528-016-9715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-016-9715-3

Keywords

Navigation