Skip to main content
Log in

Positional cues regulate dorsal organ formation in the liverwort Marchantia polymorpha

  • JPR Symposium
  • Apical Stem Cell(s): Evolutionary Basis for 3D Body Plans in Land Plants
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Bryophytes and vascular plants represent the broadest evolutionary divergence in the land plant lineage, and comparative analyses of development spanning this divergence therefore offer opportunities to identify truisms of plant development in general. In vascular plants, organs are formed repetitively around meristems at the growing tips in response to positional cues. In contrast, leaf formation in mosses and leafy liverworts occurs from clonal groups of cells derived from a daughter cell of the apical stem cell known as merophytes, and cell lineage is a crucial factor in repetitive organ formation. However, it remains unclear whether merophyte lineages are a general feature of repetitive organ formation in bryophytes as patterns of organogenesis in thalloid liverworts are unclear. To address this question, we developed a clonal analysis method for use in the thalloid liverwort Marchantia polymorpha, involving random low-frequency induction of a constitutively expressed nuclear-targeted fluorescent protein by dual heat-shock and dexamethasone treatment. M. polymorpha thalli ultimately derive from stem cells in the apical notch, and the lobes predominantly develop from merophytes cleft to the left and right of the apical cell(s). Sector induction in gemmae and subsequent culture occasionally generated fluorescent sectors that bisected thalli along the midrib and were maintained through several bifurcation events, likely reflecting the border between lateral merophytes. Such thallus-bisecting sectors traversed dorsal air chambers and gemma cups, suggesting that these organs arise independently of merophyte cell lineages in response to local positional cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apostolakos P, Galatis B, Mitrakos K (1982) Studies on the development of the air pores and air chambers of Marchantia paleacea. 1. Light microscopy. Ann Bot 49:377–396

    Google Scholar 

  • Barnes CR, Land WJG (1907) Bryological papers. I. The origin of air chambers. Bot Gaz 44:197–213

    Google Scholar 

  • Barnes CR, Land WJG (1908) Bryological papers. II. The origin of the cupule of Marchantia. Bot Gaz 46:401–409

    Google Scholar 

  • Crandall-Stotler B (1980) Morphogenetic designs and a theory of bryophyte origins and divergence. Bioscience 30:580–585

    Google Scholar 

  • Crandall-Stotler B (1981) Morphology/anatomy of hepatics and anthocerotes. J. Cramer, Lichtenstein

    Google Scholar 

  • Dolan L, Duckett CM, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Poethig S, Roberts K (1994) Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development 120:2465–2474

    CAS  Google Scholar 

  • Douin C (1925) La théorie des initiales chez les Hépatiques à feuilles. Bull Soc Bot Fr 72:565–591

    Google Scholar 

  • Gifford EMJ (1983) Concept of apical cells in bryophytes and pteridophytes. Ann Rev Plant Physiol 34:419–440

    Google Scholar 

  • Harrison CJ (2017) Development and genetics in the evolution of land plant body plans. Phil Trans R Soc B 372:20150490

    Google Scholar 

  • Harrison CJ, Langdale JA (2010) Comment: The developmental pattern of shoot apices in Selaginella kraussiana (Kunze) A. Braun. Int J Plant Sci 171:690–692

    Google Scholar 

  • Harrison CJ, Rezvani M, Langdale JA (2007) Growth from two transient apical initials in the meristem of Selaginella kraussiana. Development 134:881–889

    CAS  PubMed  Google Scholar 

  • Harrison CJ, Roeder AH, Meyerowitz EM, Langdale JA (2009) Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens. Curr Biol 19:461–471

    CAS  PubMed  Google Scholar 

  • Heidstra R, Welch D, Scheres B (2004) Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev 18:1964–1969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishizaki K, Nonomura M, Kato H, Yamato KT, Kohchi T (2012) Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha. J Plant Res 125:643–651

    CAS  PubMed  Google Scholar 

  • Ishizaki K, Mizutani M, Shimamura M, Masuda A, Nishihama R, Kohchi T (2013) Essential role of the E3 ubiquitin ligase NOPPERABO1 in schizogenous intercellular space formation in the liverwort Marchantia polymorpha. Plant Cell 25:4075–4084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishizaki K, Nishihama R, Ueda M, Inoue K, Ishida S, Nishimura Y, Shikanai T, Kohchi T (2015) Development of Gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PLoS One 10:e0138876

    PubMed  PubMed Central  Google Scholar 

  • Kanazawa T, Era A, Minamino N, Shikano Y, Fujimoto M, Uemura T, Nishihama R, Yamato KT, Ishizaki K, Nishiyama T, Kohchi T, Nakano A, Ueda T (2016) SNARE molecules in Marchantia polymorpha: unique and conserved features of the membrane fusion machinery. Plant Cell Physiol 57:307–324

    CAS  PubMed  Google Scholar 

  • Kato H, Kouno M, Takeda M, Suzuki H, Ishizaki K, Nishihama R, Kohchi T (2017) The roles of the sole activator-type auxin response factor in pattern formation of Marchantia polymorpha. Plant Cell Physiol 58:1642–1651

    CAS  PubMed  Google Scholar 

  • Kidner C, Sundaresan V, Roberts K, Dolan L (2000) Clonal analysis of the Arabidopsis root confirms that position, not lineage, determines cell fate. Planta 211:191–199

    CAS  PubMed  Google Scholar 

  • Kopischke S, Schussler E, Althoff F, Zachgo S (2017) TALEN-mediated genome-editing approaches in the liverwort Marchantia polymorpha yield high efficiencies for targeted mutagenesis. Plant Methods 13:20

    PubMed  PubMed Central  Google Scholar 

  • Korn RW (1993) Apical cells as meristems. Acta Biotheor 41:175–189

    Google Scholar 

  • Korn RW (2001) Analysis of shoot apical organization in six species of the Cupressaceae based on chimeric behavior. Am J Bot 88:1945–1952

    CAS  PubMed  Google Scholar 

  • Korn RW (2002) Chimeric patterns in Juniperus chinensis ‘Torulosa Variegata’ (Cupressaceae) expressed during leaf and stem formation. Am J Bot 89:758–765

    PubMed  Google Scholar 

  • Kubota A, Ishizaki K, Hosaka M, Kohchi T (2013) Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotechnol Biochem 77:167–172

    CAS  PubMed  Google Scholar 

  • Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    CAS  PubMed  Google Scholar 

  • Mano S, Nishihama R, Ishida S, Hikino K, Kondo M, Nishimura M, Yamato KT, Kohchi T, Nakagawa T (2018) Novel gateway binary vectors for rapid tripartite DNA assembly and promoter analysis with various reporters and tags in the liverwort Marchantia polymorpha. PLoS One 13:e0204964

    PubMed  PubMed Central  Google Scholar 

  • Moody L (2020) Three-dimensional growth: a developmental innovation that facilitated plant terrestrialization. J Plant Res.https://doi.org/10.1007/s10265-020-01173-4

    Article  PubMed  Google Scholar 

  • Nishihama R, Ishizaki K, Hosaka M, Matsuda Y, Kubota A, Kohchi T (2015) Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha. J Plant Res 128:407–421

    CAS  PubMed  Google Scholar 

  • Nishihama R, Ishida S, Urawa H, Kamei Y, Kohchi T (2016) Conditional gene expression/deletion systems for Marchantia polymorpha using its own heat-shock promoter and Cre/loxP-mediated site-specific recombination. Plant Cell Physiol 57:271–280

    PubMed  Google Scholar 

  • Parihar NS (1967) An introduction to Embryophyta volume I: Bryophyta. Indian Universities Press, Allahbad

    Google Scholar 

  • Poethig RS (1987) Clonal analysis of cell lineage patterns in plant development. Am J Bot 74:581–594

    Google Scholar 

  • Poethig RS, Szymkowiak EJ (1995) Clonal analysis of leaf development in maize. Maydica (Italy) 40:67–76

    Google Scholar 

  • Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2005) Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato. Development 132:15–26

    CAS  PubMed  Google Scholar 

  • Ruhland W (1924) Musci. Allgemeiner Teil. Verlag von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Sanders HL, Darrah PR, Langdale JA (2011) Sector analysis and predictive modelling reveal iterative shoot-like development in fern fronds. Development 138:2925–2934

    CAS  PubMed  Google Scholar 

  • Satina S, Blakeslee AF, Avery AG (1940) Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am J Bot 27:895–905

    Google Scholar 

  • Saulsberry A, Martin PR, O’Brien T, Sieburth LE, Pickett FB (2002) The induced sector Arabidopsis apical embryonic fate map. Development 129:3403–3410

    CAS  PubMed  Google Scholar 

  • Scheres B (2001) Plant cell identity. The role of position and lineage. Plant Physiol 125:112–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  • Shimamura M (2016) Marchantia polymorpha: taxonomy, phylogeny and morphology of a model system. Plant Cell Physiol 57:230–256

    CAS  PubMed  Google Scholar 

  • Sieburth LE, Drews GN, Meyerowitz EM (1998) Non-autonomy of AGAMOUS function in flower development: use of a Cre/loxP method for mosaic analysis in Arabidopsis. Development 125:4303–4312

    CAS  PubMed  Google Scholar 

  • Solly JE, Cunniffe NJ, Harrison CJ (2017) Regional growth rate differences specified by apical notch activities regulate liverwort thallus shape. Curr Biol 27:16–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugano SS, Nishihama R, Shirakawa M, Takagi J, Matsuda Y, Ishida S, Shimada T, Hara-Nishimura I, Osakabe K, Kohchi T (2018) Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS One 13:e0205117

    PubMed  PubMed Central  Google Scholar 

  • Sussex IM (1951) Experiments on the cause of dorsiventrality in leaves. Nature 167:651–652

    CAS  PubMed  Google Scholar 

  • Sussex IM (1954) Experiments on the cause of dorsiventrality in leaves. Nature 174:351–352

    Google Scholar 

  • van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B (1995) Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378:62–65

    PubMed  Google Scholar 

  • Wachsman G, Heidstra R, Scheres B (2011) Distinct cell-autonomous functions of RETINOBLASTOMA-RELATED in Arabidopsis stem cells revealed by the Brother of Brainbow clonal analysis system. Plant Cell 23:2581–2591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yasui Y, Tsukamoto S, Sugaya T, Nishihama R, Wang Q, Kato H, Yamato KT, Fukaki H, Mimura T, Kubo H, Theres K, Kohchi T, Ishizaki K (2019) GEMMA CUP-ASSOCIATED MYB1, an ortholog of axillary meristem regulators, is essential in vegetative reproduction in Marchantia polymorpha. Curr Biol 29:3987–3995

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Takashi Ueda and Takehiko Kanazawa for kindly providing the MpSYP13B entry vector. We thank Shohei Yamaoka, Sakiko Ishida, Akari Ito, Moe Kagao, Masaya Tsumura, Runa Sato and Yuki Sato for helpful discussion. This work was supported by the Japan Society for the Promotion of Science KAKENHI (Grant number JP18J12698 to H.S.), the Ministry of Education, Culture, Sports, Science & Technology KAKENHI (Grant number 18H04836 to R.N.), and SPIRITS 2017 of Kyoto University to R.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichi Nishihama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, H., Harrison, C.J., Shimamura, M. et al. Positional cues regulate dorsal organ formation in the liverwort Marchantia polymorpha. J Plant Res 133, 311–321 (2020). https://doi.org/10.1007/s10265-020-01180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-020-01180-5

Keywords

Navigation