Skip to main content
Log in

System-level understanding of the potential acid-tolerance components of Acidithiobacillus thiooxidans ZJJN-3 under extreme acid stress

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

In previous study, two extremely acidophilic strains Acidithiobacillus thiooxidans ZJJN-3 (collection site: bioleaching leachate) and ZJJN-5 (collection site: bioleaching wastewater) were isolated from a typical industrial bio-heap in China. Here, we unraveled the potential acid-tolerance components of ZJJN-3 by comparing the physiological differences with ZJJN-5 under different acid stresses. The parameters used for comparison included intracellular pH (pHin), capsule morphology, fatty acid composition of cell membrane, transcription of key molecular chaperones, H+-ATPase activities and NAD+/NADH ratio. It was indicated that the acid-tolerance of A. thiooxidans ZJJN-3 was systematically regulated. Capsule first thickened and then shed off along with increased acid stress. Cell membrane maintained the intracellular stability by up-regulating the proportion of unsaturated fatty acid and cyclopropane fatty acids. Meanwhile, the transcription of key repair molecular chaperones (GrpE–DnaK–DnaJ) was up-regulated by 2.2–3.5 folds for ensuring the proper folding of peptide. Moreover, low pHin promoted ZJJN-3 to biosynthesize more H+-ATPase for pumping H+ out of cells. Furthermore, the NAD+/NADH ratio increased due to the decreased H+ concentration. Based on the above physiological analysis, the potential acid-tolerance components of A. thiooxidans ZJJN-3 were first proposed and it would be useful for better understanding how these extremophiles responded to the high acid stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Africa CJ, van Hille RP, Harrison STL (2013) Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor. Appl Microbiol Biotechnol 97:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Andrés-Barrao C, Saad MM, Chappuis ML, Boffa M, Perret X, Pérez RO, Barja F (2012) Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. J Proteom 75:1701–1717

    Article  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  CAS  PubMed  Google Scholar 

  • Behera SK, Panda PP, Singh S, Pradhan N, Sukla LB, Mishra BK (2011) Study on reaction mechanism of bioleaching of nickel and cobalt from lateritic chromite overburdens. Int Biodeterior Biodegrad 65:1035–1042

    Article  CAS  Google Scholar 

  • Behera SK, Panda SK, Pradhan N, Sukla LB, Mishra BK (2012) Extraction of nickel by microbial reduction of lateritic chromite overburden of Sukinda, India. Bioresour Technol 125:17–22

    Article  CAS  PubMed  Google Scholar 

  • Bobadilla Fazzini RA, Levican G, Parada P (2011) Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate. Appl Microbiol Biotechnol 89:771–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breeuwer P, Drocourt J, Rombouts FM, Abee T (1996) A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl Environ Microbiol 62:178–183

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chao J, Wang W, Xiao SM, Liu XD (2008) Response of Acidithiobacillus ferrooxidans ATCC 23270 gene expression to acid stress. World J Microbiol Biotechnol 24:2103–2109

    Article  CAS  Google Scholar 

  • Chi A, Valenzuela L, Beard S, Mackey AJ, Shabanowitz J, Hunt DF, Jerez CA (2007) Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high throughoutput proteomics analysis. Mol Cell Proteom 6:2239–2251

    Article  CAS  Google Scholar 

  • Ciaramella M, Napoli A, Rossi M (2005) Another extreme genome: how to live at pH 0. Trends Microbiol 13:49–51

    Article  CAS  PubMed  Google Scholar 

  • Feng SS, Yang HL, Xin Y, Zhang L, Kang WL, Wang W (2012) Isolation of an extremely acidophilic and highly efficient strain Acidithiobacillus sp. for chalcopyrite bioleaching. J Ind Microbiol Biotechnol 39:1625–1635

    Article  CAS  PubMed  Google Scholar 

  • Feng SS, Yang HL, Xin Y, Gao K, Yang JW, Liu T, Zhang L, Wang W (2013) A novel and highly efficient system for chalcopyrite bioleaching by mixed strains of Acidithiobacillus. Bioresour Technol 129:456–462

    Article  CAS  PubMed  Google Scholar 

  • Feng SS, Yang HL, Xin Y, Zhan X, Wang W (2014) Novel integration strategy for enhancing chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter. Bioresour Technol 161:371–378

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SJ, Ingledew WJ (2008) Energetic problems faced by micro-organisms growing or surviving on parsimonious energy sources and at acidic pH: I. Acidithiobacillus ferrooxidans as a paradigm. Biochim Biophys Acta 1777:1471–1479

    Article  CAS  PubMed  Google Scholar 

  • Guan NZ, Liu L, Shin HD, Chen RR, Zhang J, Li JH, Du GC, Shi ZP, Chen J (2013) Systems-level understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: mechanism and application. J Biotechnol 167:56–63

    Article  CAS  PubMed  Google Scholar 

  • Guiliani N, Jerez CA (2000) Molecular cloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus ferrooxidans. Appl Environ Microbiol 66:2318–2324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hallberg KB, González-Toril E, Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Hwang HJ, Choi SP, Lee SY, Choi J, Han SJ, Lee PC (2015) Dynamics of membrane fatty acid composition of succinic acid-producing Anaerobiospirillum succiniciproducens. J Biotechnol 193:130–133

    Article  CAS  PubMed  Google Scholar 

  • Kanjee U, Houry WA (2013) Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol 67:65–81

    Article  CAS  PubMed  Google Scholar 

  • Komatsu H, Chong PLG (1998) Low permeability of liposomal membranes composed of bipolar tetraether lipids from thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biochemistry 37:107–115

    Article  CAS  PubMed  Google Scholar 

  • Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Macalady JL, Vestling MM, Baumler D, Boekelheide N, Kaspar CW, Banfield JF (2004) Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid. Extremophiles 8:411–419

    Article  CAS  PubMed  Google Scholar 

  • Mangold S, Jonna VR, Dopson M (2013) Response of Acidithiobacillus caldus toward suboptimal pH conditions. Extremophiles 17:689–696

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Ohishi H, Benno Y (2004) H+-ATPase activity in Bifidobacterium with special reference to acid tolerance. Int J Food Microbiol 93:109–113

    Article  CAS  PubMed  Google Scholar 

  • Mykytczuk NCS, Trevors JT, Leduc LG, Ferroni GD (2007) Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol 95:60–82

    Article  CAS  PubMed  Google Scholar 

  • Mykytczuk NCS, Trevors JT, Ferroni GD, Leduc LG (2010) Cytoplasmic membrane fluidity and fatty acid composition of Acidithiobacillus ferrooxidans in response to pH stress. Extremophiles 14:427–441

    Article  CAS  PubMed  Google Scholar 

  • Nagle JF, Mathai JC, Zeidel ML, Tristram-Nagle S (2008) Theory of passive permeability through lipid bilayers. J Gen Physiol 131:77–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Norris PR, Davis-Belmar CS, Brown CF, Calvo-Bado LA (2011) Autotrophic, sulfur-oxidizing actinobacteria in acidic environments. Extremophiles 15:155–163

    Article  CAS  PubMed  Google Scholar 

  • Plante CJ (2000) Role of bacterial exopolymeric capsules in protection from deposit-feeder digestion. Aquat Microb Ecol 21:211–219

    Article  Google Scholar 

  • Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–79

    Article  PubMed  Google Scholar 

  • Valdes J, Ossandon F, Quatrini R, Dopson M, Holmes DS (2011) Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. J Bacteriol 193:7003–7004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A. Appl Microbiol Biotechnol 97:7529–7541

    Article  CAS  PubMed  Google Scholar 

  • Wu CD, Zhang J, Wang M, Du GC, Chen J (2012) Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J Ind Microbiol Biotechnol 39:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Yang HL, Feng SS, Xin Y, Wang W (2014) Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp. Bioresour Technol 154:185–191

    Article  CAS  PubMed  Google Scholar 

  • Zeng WM, Qiu GZ, Zhou HZ, Peng JH, Chen M, Tan SN, Chao WL, Liu XD, Zhang YS (2010) Community structure and dynamics of the free and attached microorganisms. Bioresour Technol 101:7068–7075

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 31301540 and 21306064), the National High Technology Research and Development Program of China (863 Program) (Nos. 2012AA021201 and 2012AA021302), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the 111 Project (No. 111-2-06), Natural Science Foundation of Jiangsu Province (No. BK20150133),  and Scientific Program of Jiangnan University (No. JUSRP11538).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailin Yang or Wu Wang.

Additional information

Communicated by H. Atomi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Yang, H. & Wang, W. System-level understanding of the potential acid-tolerance components of Acidithiobacillus thiooxidans ZJJN-3 under extreme acid stress. Extremophiles 19, 1029–1039 (2015). https://doi.org/10.1007/s00792-015-0780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0780-z

Keywords

Navigation