Skip to main content
Log in

Image segmentation using a multilayer level-set approach

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

We propose an efficient multilayer segmentation method based on implicit curve evolution and on variational approach. The proposed formulation uses the minimal partition problem as formulated by D. Mumford and J. Shah, and can be seen as a more efficient extension of the segmentation models previously proposed in Chan and Vese (Scale-Space Theories in Computer Vision, Lecture Notes in Computer Science, Vol. 1682, pp. 141–151, 1999, IEEE Trans Image Process 10(2):266–277, 2001), and Vese and Chan (Int J Comput Vis 50(3):271–293, 2002). The set of unknown discontinuities is represented implicitly by several nested level lines of the same function, as inspired from prior work on island dynamics for epitaxial growth (Caflisch et al. in Appl Math Lett 12(4):13, 1999; Chen et al. in J Comput Phys 167:475, 2001). We present the Euler–Lagrange equations of the proposed minimizations together with theoretical results of energy decrease, existence of minimizers and approximations. We also discuss the choice of the curve regularization and conclude with several experimental results and comparisons for piecewise-constant segmentation of gray-level and color images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronsson G. (1967). Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6(6): 551–561

    Article  MATH  MathSciNet  Google Scholar 

  2. Caflisch R.E., Gyure M.F., Merriman B., Osher S., Ratsch C., Vvedensky D.D. and Zinck J.J. (1999). Island dynamics and the level set method for epitaxial growth. Appl. Math. Lett. 12(4): 13

    Article  MATH  MathSciNet  Google Scholar 

  3. Caselles V., Morel J.-M. and Sbert C. (1998). An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7(3): 376–386

    Article  MATH  MathSciNet  Google Scholar 

  4. Chan T.F., Sandberg B.Y. and Vese L.A. (2000). Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2): 130–141

    Article  Google Scholar 

  5. Chan, T.F., Vese, L.: An active contour model without edges. In: Scale-Space Theories in Computer Vision, Lecture Notes in Computer Science, Vol. 1682, pp. 141–151 (1999)

  6. Chan T.F. and Vese L.A. (2001). Active contours without edges. IEEE Trans. Image Process. 10(2): 266–277

    Article  MATH  Google Scholar 

  7. Chen S., Kang M., Merriman B., Caflisch R.E., Ratsch C., Fedkiw R., Gyure M.F. and Osher S. (2001). Level set method for thin film epitaxial growth. J. Comput. Phys. 167: 475

    Article  MATH  Google Scholar 

  8. Chung, G., Vese, L.A.: Energy minimization based segmentation and denoising using a multilayer level set approach. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition, 5th International Workshop, EMMCVPR 2005, St Augustine, FL, USA, 9–11 November 2005. LNCS, Vol. 3757/2005, pp. 439–455 (2005)

  9. Cohen L.D. (1997). Avoiding local minima for deformable curves in image analysis. In: Le Méhauté A., Rabut C., Schumaker L.L. (eds). Curves and Surfaces with Applications in CAGD, pp. 77–84

  10. Cohen, L., Bardinet, E., Ayache, N.: Surface reconstruction using active contour models. In: Proceedings of SPIE 93 Conference on Geometric Methods in Computer Vision, San Diego (1993)

  11. Dervieux A. and Thomasset F. (1979). A finite element method for the simulation of Rayleigh–Taylor instability. Lect. Notes Math. 771: 145–159

    Article  MathSciNet  Google Scholar 

  12. Dervieux A. and Thomasset F. (1980). Multifluid incompressible flows by a finite element method. Lect. Notes Phys. 141: 158–163

    Article  Google Scholar 

  13. Evans L.C. and Gariepy R. (1992). Measure Theory and Fine Properties of Functions. CRC Press, London

    MATH  Google Scholar 

  14. Gyure M.F., Ratsch C., Merriman B., Caflisch R.E., Osher S., Zinck J.J. and Vvedensky D.D. (1998). Level set methods for the simulation of epitaxial phenomena. Phys. Rev. E 58: R6927

    Article  Google Scholar 

  15. Jensen R. (1993). Uniqueness of Lipschitz extensions—minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123(1): 51–74

    Article  MATH  Google Scholar 

  16. Kimmel R. (2003). Fast Edge Integration. In: Osher, S. and Paragios, N. (eds) Geometric Level Set Methods in Imaging, Vision and Graphics, pp 59–77. Springer, Heidelberg

    Chapter  Google Scholar 

  17. Lie J., Lysaker M. and Tai X.-C. (2006). A Binary Level Set Model and Some Applications to Mumford-Shah Image Segmentation. IEEE Trans. Image Process. 15(5): 1171–1181

    Article  Google Scholar 

  18. Mumford D. and Shah J. (1989). Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42: 577–685

    Article  MATH  MathSciNet  Google Scholar 

  19. Osher S. and Sethian J. (1988). Fronts propagating with curvature-dependent speed—algorithms based on Hamilton–Jacobi formulations. JCP 79(1): 12–49

    Article  MATH  MathSciNet  Google Scholar 

  20. Paragios N. and Deriche R. (1999). Unifying boundary and region-based information for geodesic active tracking. Proc. Comput. Vision Pattern Recognit. 2: 23–25

    Google Scholar 

  21. Paragios N. and Deriche R. (2002). Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. Vis. Commun. Image Represent. 13(1–2): 249–268

    Article  Google Scholar 

  22. Paragios N. and Deriche R. (2002). Geodesic active regions and level set methods for supervised texture segmentation. IJCV 46(3): 223–247

    Article  MATH  Google Scholar 

  23. Rudin L.I., Osher S. and Fatemi E. (1992). Nonlinear Total variation based noise removal algorithms. Phys. D Nonlinear Phenomena 60(1–4): 259–268

    Article  MATH  Google Scholar 

  24. Samson, C., Blanc-Féraud, L., Aubert, G., Zérubia, J.: A Level Set Model for Image Classification. LNCS, vol. 1682, pp. 306–317

  25. Samson C., Blanc-Féraud L., Aubert G. and Zérubia J. (2000). A level set model for image classification. IJCV 40(3): 187–197

    Article  MATH  Google Scholar 

  26. Tsai A., Yezzi A. and Willsky A.S. (2001). Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8): 1169–1186

    Article  MATH  Google Scholar 

  27. Vese L.A. and Chan T.F. (2002). A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3): 271–293

    Article  MATH  Google Scholar 

  28. Vese L. (2003). Multiphase Object Detection and Image Segmentation. In: Osher, S. and Paragios, N. (eds) Geometric Level Set Methods in Imaging, Vision and Graphics, pp 175–194. Springer, Heidelberg

    Chapter  Google Scholar 

  29. Zhao H.-K., Chan T., Merriman B. and Osher S. (1996). Variational level set approach to multiphase motion. J. Comput. Phys. 127(1): 179–195

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luminita A. Vese.

Additional information

Communicated by K. Mikula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, G., Vese, L.A. Image segmentation using a multilayer level-set approach. Comput. Visual Sci. 12, 267–285 (2009). https://doi.org/10.1007/s00791-008-0113-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-008-0113-1

Keywords

Navigation