Skip to main content
Log in

Diversity of the metal-transporting P1B-type ATPases

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The P1B-ATPases are integral membrane proteins that couple ATP hydrolysis to metal cation transport. Widely distributed across all domains of life, these enzymes have been previously shown to transport copper, zinc, cobalt, and other thiophilic heavy metals. Recent data suggest that these enzymes may also be involved in nickel and/or iron transport. Here we have exploited large amounts of genomic data to examine and classify the various P1B-ATPase subfamilies. Specifically, we have combined new methods of data partitioning and network visualization known as Transitivity Clustering and Protein Similarity Networks with existing biochemical data to examine properties such as length, speciation, and metal-binding motifs of the P1B-ATPase subfamily sequences. These data reveal interesting relationships among the enzyme sequences of previously established subfamilies, indicate the presence of two new subfamilies, and suggest the existence of new regulatory elements in certain subfamilies. Taken together, these findings underscore the importance of P1B-ATPases in homeostasis of nearly every biologically relevant transition metal and provide an updated framework for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Actuator domain

ATP:

Adenosine-5′-triphosphate

ATPBD:

ATP-binding domain

Fur:

Ferric uptake regulator

Hr:

Hemerythrin

MBD:

Metal-binding domain

ORF:

Open reading frame

SERCA:

Sarcoplasmic/endoplasmic reticulum Ca2+ transporter

TM:

Transmembrane helix

References

  1. Axelsen KB, Palmgren MG (1998) J Mol Evol 46:84–101

    CAS  PubMed  Google Scholar 

  2. Lutsenko S, Kaplan JH (1995) Biochemistry 34:15607–15613

    CAS  PubMed  Google Scholar 

  3. Argüello JM (2003) J Membr Biochem 195:93–108

    Google Scholar 

  4. Argüello JM (2007) Biometals 20:233–248

    PubMed  Google Scholar 

  5. Klein JS, Lewinson O (2011) Metallomics 3:1098–1108

    CAS  PubMed  Google Scholar 

  6. Jorgensen PK, Håkansson KO, Karlisch SJD (2003) Annu Rev Physiol 65:817–849

    CAS  PubMed  Google Scholar 

  7. Toyoshima C (2009) Biochim Biophys Acta 1793:941–946

    CAS  PubMed  Google Scholar 

  8. Kühlbrandt W (2004) Nat Mol Cell Biol 5:282–295

    Google Scholar 

  9. Albers RW (1967) Annu Rev Biochem 36:727–756

    CAS  PubMed  Google Scholar 

  10. Post RL, Hegyvary C, Kume S (1972) J Biol Chem 247:6530–6540

    CAS  PubMed  Google Scholar 

  11. Møller JV, Olesen C, Winther AM, Nissen P (2010) Q Rev Biophys 43:501–566

    PubMed  Google Scholar 

  12. Morth JP, Pederson BP, Toustrup-Jensen MS, Sørensen TL-M, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Nature 450:1043–1049

    CAS  PubMed  Google Scholar 

  13. Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P (2007) Nature 450:1111–1114

    CAS  PubMed  Google Scholar 

  14. Toyoshima C, Mizutani T (2004) Nature 430:529–535

    CAS  PubMed  Google Scholar 

  15. Galanis A, Karapetsas A, Sandaltzopoulos R (2009) Mutat Res 674:31–35

    CAS  PubMed  Google Scholar 

  16. Galaris D, Evangelou A (2002) Crit Rev Oncol Hemat 42:93–103

    Google Scholar 

  17. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) J Biol Inorg Chem 13:1205–1218

    CAS  PubMed  Google Scholar 

  18. Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Nature 460:823–830

    CAS  PubMed  Google Scholar 

  19. Nelson N (1999) EMBO J 18:4361–4371

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Ma Z, Jacobsen FE, Giedroc DP (2009) Chem Rev 109:4644–4681

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Silver S (1996) Gene 179:9–19

    CAS  PubMed  Google Scholar 

  22. Williams LE, Pittman JK, Hall JL (2000) Biochim Biophys Acta 1465:104–126

    CAS  PubMed  Google Scholar 

  23. Askwith C, Kaplan J (1998) TIBS 23:135–138

    CAS  PubMed  Google Scholar 

  24. Andrews NC, Levy JE (1998) Blood 92:1845–1851

    CAS  PubMed  Google Scholar 

  25. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Nat Genet 3:7–13

    CAS  PubMed  Google Scholar 

  26. Bull PC, Cox DW (1994) Trends Genet 10:246–252

    CAS  PubMed  Google Scholar 

  27. Raimunda D, Long JE, Sassetti CM, Argüello JM (2012) Mol Microbiol 84:1139–1149

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Raimunda D, Long JE, Padilla-Benavides T, Sassetti CM, Argüello JM (2013) Mol Microbiol 91:185–197

    Google Scholar 

  29. Zielazinski EL, Cutsail GE, Hoffman BM, Stemmler TL, Rosenzweig AC (2012) Biochemistry 51:7891–7900

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Zielazinski EL, González-Guerrero M, Subramaniam P, Stemmler TL, Argüello JM, Rosenzweig AC (2013) Metallomics 5:1614–1623

    CAS  PubMed  Google Scholar 

  31. Padilla-Benavides T, Long JE, Raimunda D, Sassetti CM, Argüello JM (2013) J Biol Chem 288:11334–11347

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Mandal AK, Argüello JM (2003) Biochemistry 42:11040–11047

    CAS  PubMed  Google Scholar 

  33. Liu J, Dutta SJ, Stemmler AJ, Mitra B (2006) Biochemistry 45:763–772

    CAS  PubMed  Google Scholar 

  34. Wittkop T, Emig D, Truss A, Albrecht M, Böcker S, Baumbach J (2011) Nat Protoc 6:285–295

    CAS  PubMed  Google Scholar 

  35. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang P-L, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD (2007) Nat Protoc 2:2366–2382

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Bioinformatics 25:1189–1191

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Bioinformatics 23:2947–2948

    CAS  PubMed  Google Scholar 

  38. Henikoff S, Henikoff JG (1992) Proc Natl Acad Sci USA 89:10915–10919

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) J Mol Biol 305:567–580

    CAS  PubMed  Google Scholar 

  40. Hofmann K, Stoffel W (1993) Biol Chem 374:166

    Google Scholar 

  41. Bernsel A, Viklund H, Hennerdal A, Elofsson A (2009) Nucl Acids Res 37:W465–W468

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Traverso ME, Subramanian P, Davydov R, Hoffman BM, Stemmler TL, Rosenzweig AC (2010) Biochemistry 49:7060–7068

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Finn RD, Clements J, Eddy SR (2011) Nucl Acids Res 39:W29–W37

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2012) Nucl Acids Res 40:D290–D301

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK, Chivian D, Friedland GD, Huang KH, Keller K, Novichkov PS, Dubchak IL, Alm EJ, Arkin AP (2010) Nucl Acids Res 38:D396–D400

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Novichkov PS, Laikova ON, Novichkova ES, Gelfand MS, Arkin AP, Dubchak I, Rodionov DA (2010) Nucl Acids Res 38:D111–D118

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Sazinsky MH, Agarwal S, Argüello JM, Rosenzweig AC (2006) Biochemistry 45:9949–9955

    CAS  PubMed  Google Scholar 

  48. Sazinsky MH, Mandal AK, Argüello JM, Rosenzweig AC (2006) J Biol Chem 281:11161–11166

    CAS  PubMed  Google Scholar 

  49. Sørensen TL-M, Møller JV, Nissen P (2004) Science 304:1672–1675

    PubMed  Google Scholar 

  50. Cox DW, Moore SDP (2002) J Bioenerg Biomembr 34:333–338

    CAS  PubMed  Google Scholar 

  51. Lübben M, Guldenhaupt J, Zoitner M, Deigweiher K, Haebel P, Urbanke C, Scheidig AJ (2007) J Mol Biol 369:368–385

    PubMed  Google Scholar 

  52. Jaykanthan S, Roberts SA, Weichsel A, Argüello JM, McEvoy MM (2012) Biosci Rep 32:443–453

    Google Scholar 

  53. Gourdon P, Liu X-Y, Skjørringe T, Morth JP, Møller LB, Pederson BP, Nissen P (2011) Nature 475:59–64

    CAS  PubMed  Google Scholar 

  54. Fan B, Rosen BP (2002) J Biol Chem 277:46987–46992

    CAS  PubMed  Google Scholar 

  55. Melchers K, Weitznegger T, Buhmann A, Steinhilber W, Sachs G, Schäfer KP (1996) J Biol Chem 271:446–457

    CAS  PubMed  Google Scholar 

  56. Southron JL, Basu U, Taylor GJ (2004) FEBS Lett 566:218–222

    CAS  PubMed  Google Scholar 

  57. Lowe J, Vieyra A, Catty P, Guillain F, Mintz E, Cuillel M (2004) J Biol Chem 279:25986–25994

    CAS  PubMed  Google Scholar 

  58. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) Nat Genet 5:327–337

    CAS  PubMed  Google Scholar 

  59. DiDonato M, Sarkar B (1997) Biochim Biophys Acta 1360:3–16

    CAS  PubMed  Google Scholar 

  60. Prohaska JR, Gybina AA (2004) J Nutr 134:1003–1006

    CAS  PubMed  Google Scholar 

  61. Kaplan JH, Lutsenko S (2009) J Biol Chem 284:25461–25465

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Zhitnitsky D, Lewinson O (2013) Mol Microbiol 91:777–789

    Google Scholar 

  63. Mandal AK, Cheung WD, Argüello JM (2002) J Biol Chem 277:7201–7208

    CAS  PubMed  Google Scholar 

  64. González-Guerrero M, Eren E, Rawat S, Stemmler TL, Argüello JM (2008) J Biol Chem 283:29753–29759

    PubMed Central  PubMed  Google Scholar 

  65. Fu Y, Tsui H-CT, Bruce KE, Sham L-T, Higgins KA, Lisher JP, Kazmierczak KM, Maroney MJ, Dann CE III, Winkler ME, Giedroc DP (2013) Nat Chem Biol 9:177–183

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Argawal S, Hong D, Desai NK, Sazinsky MH, Argüello JM, Rosenzweig AC (2010) Proteins 78:2450–2458

    Google Scholar 

  67. Singleton C, Le Brun NE (2007) Biometals 20:275–289

    CAS  PubMed  Google Scholar 

  68. Padilla-Benavides T, McCann CJ, Argüello JM (2013) J Biol Chem 288:69–78

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Voskoboinik I, Mar J, Strausak D, Camakaris J (2001) J Biol Chem 276:28620–28627

    CAS  PubMed  Google Scholar 

  70. Voskoboinik I, Greenough M, La Fontaine S, Mercer JFB, Camakaris J (2001) Biochem Biophys Res Commun 281:966–970

    CAS  PubMed  Google Scholar 

  71. Tsikovskii R, MacArthur BC, Lutsenko S (2001) J Biol Chem 276:2234–2242

    Google Scholar 

  72. Wu C-C, Rice WJ, Stokes DL (2008) Structure 16:976–985

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Mattle D, Sitsel O, Autzen HE, Meloni G, Gourdon P, Nissen P (2013) J Mol Biol 425:2299–2308

    CAS  PubMed  Google Scholar 

  74. Banci L, Bertini I, Ciofi-Baffoni S, Finney LA, Outten CE, O’Halloran TV (2002) J Mol Biol 323:883–897

    CAS  PubMed  Google Scholar 

  75. Banci L, Bertini I, Ciofi-Baffoni S, Su X-C, Miras R, Bal N, Mintz E, Catty P, Shokes JE, Scott RA (2006) J Mol Biol 356:638–650

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Okkeri J, Haltia T (2006) Biochim Biophys Acta 1757:1485–1495

    CAS  PubMed  Google Scholar 

  77. Dutta SJ, Liu J, Stemmler AJ, Mitra B (2007) Biochemistry 46:3692–3703

    CAS  PubMed  Google Scholar 

  78. Raimunda D, Subramaniam P, Stemmler TL, Argüello JM (2012) Biochim Biophys Acta 1818:1374–1377

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Eren E, Kennedy DC, Maroney MJ, Argüello JM (2006) J Biol Chem 281:33881–33891

    CAS  PubMed  Google Scholar 

  80. Eren E, González-Guerrero M, Kaufman BM, Argüello JM (2007) Biochemistry 46:7754–7764

    CAS  PubMed  Google Scholar 

  81. Mitra B, Sharma R (2001) Biochemistry 40:7694–7699

    CAS  PubMed  Google Scholar 

  82. Lee J, Bae H, Jeong J, Lee J-Y, Yang Y–Y, Hwang I, Martinoia E, Lee Y (2003) Plant Physiol 133:589–596

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) Plant Physiol 149:894–904

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Plant Physiol 132:618–628

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Eren E, Argüello JM (2004) Plant Physiol 136:3712–3723

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) Plant Cell 16:1327–1339

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Sharma R, Rensing C, Rosen BP, Mitra B (2000) J Biol Chem 275:3873–3878

    CAS  PubMed  Google Scholar 

  88. Nucifora G, Chu L, Misra TK, Silver S (1989) Proc Natl Acad Sci USA 86:3544–3548

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Mana-Capelli S, Mandal AK, Argüello JM (2003) J Biol Chem 278:40534–40542

    CAS  PubMed  Google Scholar 

  90. Solioz M, Odermatt A (1995) J Biol Chem 270:9217–9221

    CAS  PubMed  Google Scholar 

  91. Schurig-Briccio LA, Gennis RB (2012) J Bacteriol 194:4107–4113

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Rutherford JC, Cavet JS, Robinson NJ (1999) J Biol Chem 274:25827–25832

    CAS  PubMed  Google Scholar 

  93. Gaballa A, Helmann JD (2002) Mol Microbiol 45:997–1005

    CAS  PubMed  Google Scholar 

  94. Kim Y-Y, Choi H, Segami S, Cho H-T, Martinoia E, Maeshima M, Lee Y (2009) Plant J. 58:737–753

    CAS  PubMed  Google Scholar 

  95. Scherer J, Nies DH (2009) Mol Microbiol 73:601–621

    CAS  PubMed  Google Scholar 

  96. Chollangi S, Thompson JW, Ruiz JC, Gardner KH, Bruick RK (2012) J Biol Chem 287:23710–23717

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Ruiz JC, Walker SD, Anderson SA, Eisenstein RS, Bruick RK (2013) J Biol Chem 288:552–560

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Thompson JW, Salahudeen AA, Chollangi S, Ruiz JC, Brautigam CA, Makris TM, Lipscomb JD, Tomchick DR, Bruick RK (2012) J Biol Chem 287:7357–7365

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Shu C, Sung MW, Stewart MD, Igumenova TI, Tan X, Li P (2012) ChemBioChem 13:788–791

    CAS  PubMed Central  PubMed  Google Scholar 

  100. French CE, Bell JML, Ward FB (2008) FEMS Microbiol Lett 279:131–145

    CAS  PubMed  Google Scholar 

  101. Bailly X, Vanin S, Chabasse C, Mizuguchi K, Vinogradov SN (2008) BMC Evol Biol 8:244–254

    PubMed Central  PubMed  Google Scholar 

  102. Francis MS, Thomas CJ (1997) Microb Path 22:67–78

    CAS  Google Scholar 

  103. Lewinson O, Lee AT, Rees DC (2009) Proc Natl Acad Sci 106:4677–4682

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Tottey S, Rondet SAM, Borrelly GPM, Robinson PJ, Rich PR, Robinson NJ (2002) J Biol Chem 277:5490–5497

    PubMed  Google Scholar 

  105. Kim H, Lee H, Shin D (2012) Biochem Biophys Res Commun 423:733–738

    CAS  PubMed  Google Scholar 

  106. Naikare H, Palyada K, Panciera R, Marlow D, Stintzi A (2006) Infect Immun 74:5433–5444

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC (2006) Biometals 19:143–157

    CAS  PubMed  Google Scholar 

  108. Barañano DE, Wolosker H, Bae B-I, Barrow RK, Snyder SH, Ferris CD (2000) J Biol Chem 275:15166–15173

    PubMed  Google Scholar 

  109. McLaughlin HP, Xiao Q, Rea RB, Pi H, Casey PG, Darby T, Charbit A, Sleator RD, Joyce SA, Cowart RE, Hill C, Klebba PE, Gahan CGM (2012) PLoS ONE 7:1–12

    Google Scholar 

  110. Busenlehner LS, Pennella MA, Giedroc DP (2003) FEMS Microbiol Rev 27:131–143

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants GM58518 (A.C.R.) and F32GM105339 (A.T.S.) and by the Walter S. and Lucienne Driskill Graduate Training Program in Life Sciences (K.P.S). Sequence searches utilized both database and analysis functions of the Universal Protein Resource (UniProt) Knowledgebase and Reference Clusters (http://www.unprot.org) and the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy C. Rosenzweig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2014_1129_MOESM1_ESM.pdf

P1B-ATPase clustering data analyzed according to the length of the ATPase may be found as Fig. S1, and Uniprot accession numbers for the P1B-type ATPases and a list of their parent organisms used to generate all clustering networks in this work may be found as Table S1, both located in the electronic supplementary material. (PDF 709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, A.T., Smith, K.P. & Rosenzweig, A.C. Diversity of the metal-transporting P1B-type ATPases. J Biol Inorg Chem 19, 947–960 (2014). https://doi.org/10.1007/s00775-014-1129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1129-2

Keywords

Navigation