Skip to main content
Log in

Contribution of intracellular ATP to cisplatin resistance of tumor cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Decreased cellular accumulation of cisplatin is a frequently observed mechanism of resistance to the drug. Beside passive diffusion, several cellular proteins using ATP hydrolysis as an energy source are assumed to be involved in cisplatin transport in and out of the cell. This investigation aimed at clarifying the contribution of intracellular ATP as an indicator of energy-dependent transport to cisplatin resistance using the A2780 human ovarian adenocarcinoma cell line and its cisplatin-resistant variant A2780cis. Depletion of intracellular ATP with oligomycin significantly decreased cellular platinum accumulation (measured by flameless atomic absorption spectrometry) in sensitive but not in resistant cells, and did not affect cisplatin efflux in both cell lines. Inhibition of Na+,K+-ATPase with ouabain reduced platinum accumulation in A2780 cells but to a lesser extent compared with oligomycin. Western blot analysis revealed lower expression of Na+,K+-ATPase α1 subunit in resistant cells compared with sensitive counterparts. The basal intracellular ATP level (determined using a bioluminescence-based assay) was significantly higher in A2780cis cells than in A2780 cells. Our results highlight the importance of ATP-dependent transport, among other processes mediated by Na+,K+-ATPase, for cisplatin influx in sensitive cells. Cellular platinum accumulation in resistant cells is reduced and less dependent on energy sources, which may partly result from Na+,K+-ATPase downregulation. Our data suggest the involvement of other ATP-dependent processes beside those regulated by Na+,K+-ATPase. Higher basal ATP level in cisplatin-resistant cells, which appears to be a consequence of enhanced mitochondrial ATP production, may represent a survival mechanism established during development of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATP:

Adenosine 5′-triphosphate

ATP7A:

ATPase, copper transporting, alfa polypeptide

ATP7B:

ATPase, copper transporting, beta polypeptide

BCA:

Bicinchoninic acid

BSA:

Bovine serum albumin

CTR1:

Copper transporter 1

CTR2:

Copper transporter 2

DAPI:

4′,6-diamidino-2-phenylindole

DMSO:

Dimethylsulfoxide

EDTA:

Ethylenediaminetetraacetic acid

ETC:

Electron transport chain

MRP:

Multidrug resistance-associated protein

MTP:

Mitochondrial transmembrane potential

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

OCT2:

Organic cation transporter 2

PBS:

Phosphate buffered saline

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulfate

References

  1. Burger H, Loos WJ, Eechoute K, Verweij J, Mathijssen RH, Wiemer EA (2011) Drug Resist Updates 14:22–34

    Article  CAS  Google Scholar 

  2. Gately DP, Howell SB (1993) Br J Cancer 67:1171–1176

    Article  PubMed  CAS  Google Scholar 

  3. Pereira-Maia E, Garnier-Suillerot A (2003) J Biol Inorg Chem 8:626–634

    Article  PubMed  CAS  Google Scholar 

  4. Stewart DJ (2007) Crit Rev Oncol Hematol 63:12–31

    Article  PubMed  Google Scholar 

  5. Hall MD, Okabe M, Shen DW, Liang XJ, Gottesman MM (2008) Annu Rev Pharmacol Toxicol 48:495–535

    Article  PubMed  CAS  Google Scholar 

  6. Dobson PD, Lanthaler K, Oliver SG, Kell DB (2009) Curr Top Med Chem 9:163–181

    Article  PubMed  CAS  Google Scholar 

  7. Fujii R, Mutoh M, Niwa K, Yamada K, Aikou T, Nakagawa M, Kuwano M, Akiyama S (1994) Jpn J Cancer Res 85:426–433

    Article  PubMed  CAS  Google Scholar 

  8. Ma J, Maliepaard M, Kolker HJ, Verweij J, Schellens JH (1998) Cancer Chemother Pharmacol 41:186–192

    Article  PubMed  CAS  Google Scholar 

  9. Shen DW, Goldenberg S, Pastan I, Gottesman MM (2000) J Cell Physiol 183:108–116

    Article  PubMed  CAS  Google Scholar 

  10. Maymon R, Bar-Shira MB, Cohen-Armon M, Holtzinger M, Leibovici J (1994) Biochim Biophys Acta 1201:173–178

    Article  PubMed  CAS  Google Scholar 

  11. Swennen EL, Ummels V, Buss I, Jaehde U, Bast A, Dagnelie PC (2010) Chem Biol Interact 184:338–345

    Article  PubMed  CAS  Google Scholar 

  12. Andrews PA, Velury S, Mann SC, Howell SB (1988) Cancer Res 48:68–73

    PubMed  CAS  Google Scholar 

  13. Kishimoto S, Kawazoe Y, Ikeno M, Saitoh M, Nakano Y, Nishi Y, Fukushima S, Takeuchi Y (2006) Cancer Chemother Pharmacol 57:84–90

    Article  PubMed  CAS  Google Scholar 

  14. Watabe M, Nakaki T (2007) Neuropharmacology 52:536–541

    Article  PubMed  CAS  Google Scholar 

  15. Pelicano H, Martin DS, Xu RH, Huang P (2006) Oncogene 25:4633–4646

    Article  PubMed  CAS  Google Scholar 

  16. Kalayda GV, Wagner CH, Buss I, Reedijk J, Jaehde U (2008) BMC Cancer 8:175

    Article  PubMed  Google Scholar 

  17. Kalayda GV, Wagner CH, Jaehde U (2012) J Inorg Biochem 116:1–10

    Article  PubMed  CAS  Google Scholar 

  18. Zisowsky J, Koegel S, Leyers S, Devarakonda K, Kassack MU, Osmak M, Jaehde U (2007) Biochem Pharmacol 73:298–307

    Article  PubMed  CAS  Google Scholar 

  19. Shchepina LA, Pletjushkina OY, Avetisyan AV, Bakeeva LE, Fetisova EK, Izyumov DS, Saprunova VB, Vyssokikh MY, Chernyak BV, Skulachev VP (2002) Oncogene 21:8149–8157

    Article  PubMed  CAS  Google Scholar 

  20. Esmann M (1991) Biochim Biophys Acta 1064:31–36

    Article  PubMed  CAS  Google Scholar 

  21. Homareda H, Ishii T, Takeyasu K (2000) Eur J Pharmacol 400:177–183

    Article  PubMed  CAS  Google Scholar 

  22. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Cancer Res 48:589–601

    PubMed  CAS  Google Scholar 

  23. Crouch SP, Kozlowski R, Slater KJ, Fletcher J (1993) J Immunol Methods 160:81–88

    Article  PubMed  CAS  Google Scholar 

  24. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  25. Andrews PA, Mann SC, Huynh HH, Albright KD (1991) Cancer Res 51:3677–3681

    PubMed  CAS  Google Scholar 

  26. Ohmori T, Morikage T, Sugimoto Y, Fujiwara Y, Kasahara K, Nishio K, Ohta S, Sasaki Y, Takahashi T, Saijo N (1993) Jpn J Cancer Res 84:83–92

    Article  PubMed  CAS  Google Scholar 

  27. Kloft C, Appelius H, Siegert W, Schunack W, Jaehde U (1999) Ther Drug Monit 21:631–637

    Article  PubMed  CAS  Google Scholar 

  28. Martin DS, Spriggs D, Koutcher JA (2001) Apoptosis 6:125–131

    Article  PubMed  CAS  Google Scholar 

  29. Nieminen AL, Saylor AK, Herman B, Lemasters JJ (1994) Am J Physiol 267:C67–C74

    PubMed  CAS  Google Scholar 

  30. Schneider V, Kalayda GV, Krieger ML, Bendas G, Jaehde U (2010) Int J Clin Pharmacol Ther 48:456–458

    PubMed  CAS  Google Scholar 

  31. Rotte A, Garmann D, Buss I, Jaehde U (2010) Chemotherapy 56:1–8

    Article  PubMed  CAS  Google Scholar 

  32. Skou JC, Esmann M (1992) J Bioenerg Biomembr 24:249–261

    PubMed  CAS  Google Scholar 

  33. Krieger ML, Eckstein N, Schneider V, Koch M, Royer HD, Jaehde U, Bendas G (2010) Int J Pharm 389:10–17

    Article  PubMed  CAS  Google Scholar 

  34. Trincavelli ML, Daniele S, Martini C (2010) Curr Top Med Chem 10:860–877

    Article  PubMed  CAS  Google Scholar 

  35. Plesner L, Plesner IW (1991) Biochim Biophys Acta 1076:421–426

    Article  PubMed  CAS  Google Scholar 

  36. Andrews PA, Albright KD (1991) In: Howell SB (ed) Platinum and other metal coordination compounds in cancer chemotherapy. Plenum Press, New York, pp 151–159

    Google Scholar 

  37. Salerno M, Yahia D, Dzamitika S, de Vries E, Pereira-Maia E, Garnier-Suillerot A (2009) J Biol Inorg Chem 14:123–132

    Article  PubMed  CAS  Google Scholar 

  38. Ahmed Z, Deyama Y, Yoshimura Y, Suzuki K (2008) Cancer Chemother Pharmacol 63:643–650

    Article  PubMed  Google Scholar 

  39. Ohmori T, Nishio K, Ohta S, Kubota N, Adachi M, Komiya K, Saijo N (1994) Int J Cancer 57:111–116

    Article  PubMed  CAS  Google Scholar 

  40. Huliciak M, Vacek J, Sebela M, Orolinova E, Znaleziona J, Havlikova M, Kubala M (2012) Biochem Pharmacol 83:1507–1513

    Article  PubMed  CAS  Google Scholar 

  41. Arato-Oshima T, Matsui H, Wakizaka A, Homareda H (1996) J Biol Chem 271:25604–25610

    Article  PubMed  CAS  Google Scholar 

  42. Shen DW, Pouliot LM, Hall MD, Gottesman MM (2012) Pharmacol Rev 64:706–721

    Article  PubMed  CAS  Google Scholar 

  43. Safaei R (2006) Cancer Lett 234:34–39

    Article  PubMed  CAS  Google Scholar 

  44. Helleman J, Burger H, Hamelers IH, Boersma AW, de Kroon AI, Stoter G, Nooter K (2006) Cancer Biol Ther 5:943–949

    Article  PubMed  CAS  Google Scholar 

  45. Choi MK, Song IS (2008) Drug Metab Pharmacokinet 23:243–253

    Article  PubMed  Google Scholar 

  46. Stolfi RL, Colofiore JR, Nord LD, Koutcher JA, Martin DS (1992) Cancer Res 52:4074–4081

    PubMed  CAS  Google Scholar 

  47. Zhou Y, Tozzi F, Chen J, Fan F, Xia L, Wang J, Gao G, Zhang A, Xia X, Brasher H, Widger W, Ellis LM, Weihua Z (2012) Cancer Res 72:304–314

    Article  PubMed  CAS  Google Scholar 

  48. Balaban RS (1990) Am J Physiol 258:C377–C389

    PubMed  CAS  Google Scholar 

  49. Sweet S, Singh G (1999) J Cell Physiol 180:91–96

    Article  PubMed  CAS  Google Scholar 

  50. Andrews PA, Albright KD (1992) Cancer Res 52:1895–1901

    PubMed  CAS  Google Scholar 

  51. Liang BC, Ullyatt E (1998) Cell Death Differ 5:694–701

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the working groups of Michael Wiese (Pharmaceutical Chemistry II, University of Bonn) and Michael Famulok (Chemical Biology, University of Bonn) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganna V. Kalayda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, V., Krieger, M.L., Bendas, G. et al. Contribution of intracellular ATP to cisplatin resistance of tumor cells. J Biol Inorg Chem 18, 165–174 (2013). https://doi.org/10.1007/s00775-012-0960-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0960-6

Keywords

Navigation