Skip to main content
Log in

Frequency-dependent enhancement of bone formation in murine tibiae and femora with knee loading

  • ORIGINAL ARTICLE
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Knee loading is a relatively new loading modality in which dynamic loads are laterally applied to the knee to induce bone formation in the tibia and the femur. The specific aim of the current study was to evaluate the effects of loading frequencies (in Hz) on bone formation at the site away from the loading site on the knee. The left knee of C57/BL/6 mice was loaded with 0.5 N force at 5, 10, or 15 Hz for 3 min/day for 3 consecutive days, and bone histomorphometry was conducted at the site 75% away from the loading site along the length of tibiae and femora. The results revealed frequency-dependent induction of bone formation, in which the dependence was different in the tibia and the femur. Compared with the sham-loading control, for instance, the cross-sectional cortical area was elevated maximally at 5 Hz in the tibia, whereas the most significant increase was observed at 15 Hz in the femur. Furthermore, mineralizing surface, mineral apposition rate, and bone formation rate were the highest at 5 Hz in the tibia (2.0-, 1.4-, and 2.7 fold, respectively) and 15 Hz in the femur (1.5-, 1.2-, and 1.8 fold, respectively). We observed that the tibia had a lower bone mineral density with more porous microstructures than the femur. Those differences may contribute to the observed differential dependence on loading frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X Holy E Zerath (2000) ArticleTitleBone mass increases in less than 4 wk of voluntary exercising in growing rats Med Sci Sports Exerc 32 1562–1569 Occurrence Handle10994905 Occurrence Handle10.1097/00005768-200009000-00006 Occurrence Handle1:STN:280:DC%2BD3cvksVGgsw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  2. CH Turner AG Robling (2005) ArticleTitleMechanisms by which exercise improves bone strength J Bone Miner Metab 23 S16–S22 Occurrence Handle10.1007/BF03026318

    Article  Google Scholar 

  3. KJ Hart JM Shaw E Vajda M Hegsted SC Miller (2001) ArticleTitleSwim-trained rats have greater bone mass, density, strength, and dynamics J Appl Physiol 91 1663–1668 Occurrence Handle11568148 Occurrence Handle1:STN:280:DC%2BD3Mrit1WmsA%3D%3D

    PubMed  CAS  Google Scholar 

  4. T Notomi N Okimoto Y Okazaki Y Tanaka T Nakamura M Suzuki (2001) ArticleTitleEffects of tower climbing exercise on bone mass, strength, and turnover in growing rats J Bone Miner Res 16 166–171 Occurrence Handle11149481 Occurrence Handle10.1359/jbmr.2001.16.1.166 Occurrence Handle1:STN:280:DC%2BD3M7jtVKmsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  5. T Mori N Okimoto A Sakai Y Okazaki N Nakura T Notomi T Nakamura (2003) ArticleTitleClimbing exercise increases bone mass and trabecular bone turnover through transient regulation of marrow osteogenic and osteoclastogenic potentials in mice J Bone Miner Res 18 2002–2009 Occurrence Handle14606513 Occurrence Handle10.1359/jbmr.2003.18.11.2002

    Article  PubMed  Google Scholar 

  6. Y Kodama Y Umemura S Nagasawa WG Beamer LR Donahue CR Rosen DJ Baylink JR Farley (2000) ArticleTitleExercise and mechanical loading increase periosteal bone formation and whole bone strength in C57BL/6J mice but not in C3H/Hej mice Calcif Tissue Int 66 298–306 Occurrence Handle10742449 Occurrence Handle10.1007/s002230010060 Occurrence Handle1:CAS:528:DC%2BD3cXivVChu78%3D

    Article  PubMed  CAS  Google Scholar 

  7. J Flieger T Karachalios L Khaldi P Raptou G Lyritis (1998) ArticleTitleMechanical stimulation in the form of vibration prevents postmenopausal bone loss in ovariectomized rats Calcif Tissue Int 63 510–514 Occurrence Handle9817946 Occurrence Handle10.1007/s002239900566 Occurrence Handle1:CAS:528:DyaK1cXnsVOhtr8%3D

    Article  PubMed  CAS  Google Scholar 

  8. CH Chestnut (1993) ArticleTitleBone mass and exercise Am J Med 95 34S–36S Occurrence Handle10.1016/0002-9343(93)90379-4

    Article  Google Scholar 

  9. EA Pedersen MP Akhter DM Cullen DB Kimmel RR Recker (1999) ArticleTitleBone response to in vivo mechanical loading in C3H/HeJ mice Calcif Tissue Int 65 41–46 Occurrence Handle10369732 Occurrence Handle10.1007/s002239900655 Occurrence Handle1:CAS:528:DyaK1MXktlerurs%3D

    Article  PubMed  CAS  Google Scholar 

  10. Y Kameyama H Hagino T Okano M Enokida S Fukata R Teshima (2004) ArticleTitleBone response to mechanical loading in adult rats with collagen-induced arthritis Bone (NY) 35 948–956

    Google Scholar 

  11. J Li DB Burr CH Turner (2002) ArticleTitleSuppression of prostaglandin synthesis with NS-398 has different effects on endocortical and periosteal bone formation induced by mechanical loading Calcif Tissue Int 70 320–329 Occurrence Handle12004337 Occurrence Handle10.1007/s00223-001-1025-y Occurrence Handle1:CAS:528:DC%2BD38XksVGhtrs%3D

    Article  PubMed  CAS  Google Scholar 

  12. SJ Warden CH Turner (2004) ArticleTitleMechanotransduction in cortical bone is most efficient at loading frequencies of 5–10 Hz Bone (NY) 34 261–270 Occurrence Handle1:STN:280:DC%2BD2c%2FntlCmsA%3D%3D

    CAS  Google Scholar 

  13. YF Hsieh AG Robling WT Ambrosius DB Burr CH Turner (2001) ArticleTitleMechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location J Bone Miner Res 16 2291–2297 Occurrence Handle11760844 Occurrence Handle10.1359/jbmr.2001.16.12.2291 Occurrence Handle1:STN:280:DC%2BD38%2FjtlOgsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  14. SM Tanaka HB Sun H Yokota (2004) ArticleTitleBone formation induced by a novel form of mechanical loading on joint tissue Biol Sci Space 18 41–44 Occurrence Handle15308820 Occurrence Handle10.2187/bss.18.41

    Article  PubMed  Google Scholar 

  15. H Yokota SM Tanaka (2005) ArticleTitleOsteogenic potential with joint loading modality J Bone Miner Metab 23 302–308 Occurrence Handle15981026 Occurrence Handle10.1007/s00774-005-0603-x

    Article  PubMed  Google Scholar 

  16. P Zhang SM Tanaka H Jiang M Su H Yokota (2006) ArticleTitleDiaphyseal bone formation in murine tibiae in response to knee loading J Appl Physiol 100 1452–1459 Occurrence Handle16410382 Occurrence Handle10.1152/japplphysiol.00997.2005

    Article  PubMed  Google Scholar 

  17. CH Turner T Yoshikawa MR Forwood TC Sun DB Burr (1995) ArticleTitleHigh frequency components of bone strain in dogs measured during various activities J Biomech 28 39–44 Occurrence Handle7852440 Occurrence Handle10.1016/0021-9290(95)80005-0 Occurrence Handle1:STN:280:DyaK2M7lsFCmtw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  18. G Jove R Michael P Lisa (2003) ArticleTitleEffect of bone porosity on the mechanical integrity of the bone–cement interface J Bone Joint Surg [Am] 85 1901–1908

    Google Scholar 

  19. I Alam SJ Warden AG Robling CH Turner (2005) ArticleTitleMechanotransduction in bone does not require a functional cyclooxygenase-2 (COX-2) gene J Bone Miner Res 20 438–446 Occurrence Handle15746988 Occurrence Handle10.1359/JBMR.041124 Occurrence Handle1:CAS:528:DC%2BD2MXis1Knurk%3D

    Article  PubMed  CAS  Google Scholar 

  20. DB Burr AG Robling CH Turner (2002) ArticleTitleEffects of biomechanical stress on bones in animals Bone (NY) 30 781–786

    Google Scholar 

  21. ML Knothe Tate U Knothe (2000) ArticleTitleAn ex vivo model to study transport processes and fluid flow in loaded bone J Biomech 33 247–254 Occurrence Handle10653041 Occurrence Handle10.1016/S0021-9290(99)00143-8 Occurrence Handle1:STN:280:DC%2BD3c7hs1OnsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  22. AE Tami P Nasser O Verborgt MB Schaffler ML Knothe Tate (2002) ArticleTitleThe role of interstitial fluid flow in the remodeling response to fatigue loading J Bone Miner Res 17 2030–2037 Occurrence Handle12412811 Occurrence Handle10.1359/jbmr.2002.17.11.2030 Occurrence Handle1:STN:280:DC%2BD38nltFGmsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  23. RJ Montgomery BD Sutker JT Bronk SR Smith PJ Kelly (1988) ArticleTitleInterstitial fluid flow in cortical bone Microvasc Res 35 295–307 Occurrence Handle3393091 Occurrence Handle10.1016/0026-2862(88)90084-2 Occurrence Handle1:STN:280:DyaL1c3nsFOqsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  24. SJ Warden (2006) ArticleTitleBreaking the rules for bone adaptation to mechanical loading J Appl Physiol 100 1441–1442 Occurrence Handle16614362 Occurrence Handle10.1152/japplphysiol.00038.2006

    Article  PubMed  Google Scholar 

  25. M Su H Jiang P Zhang Y Liu E Wang A Hsu H Yokota (2006) ArticleTitleKnee-loading modality drives molecular transport in mouse femur Ann Biomed Eng 34 1600–1606 Occurrence Handle17029032 Occurrence Handle10.1007/s10439-006-9171-z

    Article  PubMed  Google Scholar 

  26. P Zhang M Su Y Liu A Hsu H Yokota (2007) ArticleTitleKnee loading dynamically alters intramedullary pressure in mouse femora Bone (NY) 40 538–543

    Google Scholar 

  27. CT Rubin KJ McLeod (1994) ArticleTitlePromotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain Clin Orthop Relat Res 298 165–174 Occurrence Handle8118971

    PubMed  Google Scholar 

  28. YF Hsieh CH Turner (2001) ArticleTitleEffects of loading frequency on mechanically induced bone formation J Bone Miner Res 16 918–924 Occurrence Handle11341337 Occurrence Handle10.1359/jbmr.2001.16.5.918 Occurrence Handle1:STN:280:DC%2BD38%2FgvFaktg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  29. C Rubin AS Turner S Bain C Mallinckrodt KA McLeod (2001) ArticleTitleLow mechanical signals strengthen long bones Nature (Lond) 412 603–604 Occurrence Handle10.1038/35088122 Occurrence Handle1:CAS:528:DC%2BD3MXmtVCisLw%3D

    Article  CAS  Google Scholar 

  30. C Rubin R Recker D Cullen J Ryaby J McCabe K McLeod (2004) ArticleTitlePrevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety J Bone Miner Res 19 343–351 Occurrence Handle15040821 Occurrence Handle10.1359/JBMR.0301251

    Article  PubMed  Google Scholar 

  31. YX Qin T Kaplan A Saldanha CT Rubin (2003) ArticleTitleFluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity J Biomech 36 1427–1437 Occurrence Handle14499292 Occurrence Handle10.1016/S0021-9290(03)00127-1

    Article  PubMed  Google Scholar 

  32. YX Qin W Lin C Rubin (2002) ArticleTitleThe pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements Ann Biomed Eng 30 693–702 Occurrence Handle12108843 Occurrence Handle10.1114/1.1483863

    Article  PubMed  Google Scholar 

  33. SC Cowin (1999) ArticleTitleBone poroelasticity J Biomech 32 217–238 Occurrence Handle10093022 Occurrence Handle10.1016/S0021-9290(98)00161-4 Occurrence Handle1:STN:280:DyaK1M7pt12rsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  34. CC Swan RS Lakes RA Brand KJ Stewart (2003) ArticleTitleMicromechanically based poroelastic modeling of fluid flow in Haversian bone J Biomech Eng 125 25–37 Occurrence Handle12661194 Occurrence Handle10.1115/1.1535191 Occurrence Handle1:STN:280:DC%2BD3s7ks1entA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  35. S Qiu DS Rao S Palnitkar AM Parfitt (2002) ArticleTitleRelationships between osteocyte density and bone formation rate in human cancellous bone Bone (NY) 31 709–711 Occurrence Handle1:STN:280:DC%2BD3s%2Fis1Klug%3D%3D

    CAS  Google Scholar 

  36. CJ Hernandez RJ Majeska MB Schaffler (2004) ArticleTitleOsteocyte density in woven bone Bone (NY) 35 1095–1099 Occurrence Handle1:STN:280:DC%2BD2crmvV2rtw%3D%3D

    CAS  Google Scholar 

  37. KC Lee A Maxwell LE Lanyon (2002) ArticleTitleValidation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading Bone (NY) 31 407–412 Occurrence Handle1:STN:280:DC%2BD38vovFeltQ%3D%3D

    CAS  Google Scholar 

  38. RL De Souza M Matsuura F Eckstein SC Rawlinson LE Lanyon AA Pitsillides (2005) ArticleTitleNon-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element Bone (NY) 37 810–818

    Google Scholar 

  39. JM LaMothe NH Hamilton RF Zernicke (2005) ArticleTitleStrain rate influences periosteal adaptation in mature bone Med Eng Phys 27 277–284 Occurrence Handle15823468 Occurrence Handle10.1016/j.medengphy.2004.04.012

    Article  PubMed  Google Scholar 

  40. J Wu XX Wang M Higuchi K Yamada Y Ishimi (2004) ArticleTitleHigh bone mass gained by exercise in growing male mice is increased by subsequent reduced exercise J Appl Physiol 97 806–810 Occurrence Handle15090485 Occurrence Handle10.1152/japplphysiol.01169.2003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Yokota.

About this article

Cite this article

Zhang, P., Tanaka, S., Sun, Q. et al. Frequency-dependent enhancement of bone formation in murine tibiae and femora with knee loading. J Bone Miner Metab 25, 383–391 (2007). https://doi.org/10.1007/s00774-007-0774-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-007-0774-8

Key words

Navigation