Skip to main content
Log in

Patterns of genetic diversity in natural populations of Paspalum agamic complexes

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Paspalum has many multiploid species displaying a wide range of ploidy levels and reproductive systems including apomixis. However, not much is known about the genetic structure of natural populations of the apomictic species of Paspalum. The aim of this work was to evaluate the genetic diversity of several natural populations belonging to five species of Paspalum. A total of 13 populations were analyzed using amplified fragment length polymorphism (AFLP). The AFLP data revealed maximal genotypic diversity and significant levels of genetic diversity in diploid and mixed diploid–tetraploid populations of P. denticulatum and P. rufum, where all individuals represent different genotypes. This may be mainly due to the reproductive system of diploid members and the gene flow from diploids to polyploids. The pure populations of tetraploids consist of either multiple genotypes (P. nicorae) or of one dominant genotype with a few deviated genotypes (P. denticulatum and P. lividum). Here, the main source of variability may be the residual sexuality, which continues generating new genotypic combinations. The hexaploid populations of P. buckleyanum consist of a single AFLP genotype and each population represents a particular genotype suggesting that populations arose from independent polyploidization events. This study represents one of the first reports of genetic diversity in natural populations of several Paspalum agamic complexes. Apomixis in these five species may be acting as a successful method for the dispersion of better adapted genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bennett HW, Bashaw EC (1966) Interspecific hybridization with Paspalum spp. Crop Sci 6:52–54

    Article  Google Scholar 

  • Burson BL (1997) Apomixis and sexuality in some Paspalum species. Crop Sci 34:1347–1351

    Article  Google Scholar 

  • Burson BL, Bennett HW (1970) Cytology, method of reproduction, and fertility of Brunswickgrass, Paspalum nicorae Parodi. Crop Sci 10:184–187

    Article  Google Scholar 

  • Burson BL, Bennett HW (1971) Chromosome numbers, microsporogenesis, and mode of reproduction of seven Paspalum species. Crop Sci 11:292–294

    Article  Google Scholar 

  • Campbell CS, Alice LA, Wright WA (1999) Comparisons of within-population genetic variation in sexual and agamospermus Amelanchier (Rosaceae) using RAPD markers. Plant Syst Evol 215:157–167

    Article  Google Scholar 

  • Campbell D, Duchesne P, Bernatchez L (2003) AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol Ecol 12:1979–1991

    Article  PubMed  CAS  Google Scholar 

  • Carino DA, Daehler CC (1999) Genetic variation in an apomictic grass, Heteropogon contortus, in the Hawaiian Islands. Mol Ecol 8:2127–2132

    Article  PubMed  Google Scholar 

  • Cosendai AC, Hörandl E (2010) Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). Ann Bot 105:457–470

    Article  PubMed  Google Scholar 

  • Courtney SP, Manzur MI (1985) Fruiting and fitness in Crataegus monogyna: the effect of frugivores and seed predators. Oikos 44:398–406

    Article  Google Scholar 

  • D’Souza TG, Storhas M, Schulenburg H, Beukeboom LW, Michiels NK (2004) Occasional sex in an ‘asexual’ polyploid hermaphrodite. Proc R Soc B 271:1001–1007

    Article  PubMed  Google Scholar 

  • Daurelio LD, Espinoza F, Quarin CL, Pessino SC (2004) Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry. Plant Syst Evol 244:189–199

    Article  CAS  Google Scholar 

  • Davidse G, Pohl RW (1972) Chromosome numbers and notes on some Central American grasses. Can J Bot 50:273–283

    Article  Google Scholar 

  • De Wet JM (1968) Diploid–tetraploid–haploid cycles and the origin of variability in Dichanthium agamospecies. Evolution 22:394–397

    Article  Google Scholar 

  • De Wet JM, Harlan JR (1970) Apomixis, polyploidy and speciation in Dichanthium. Evolution 24:270–277

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • den Nijs JCM, Menken SBJ (1996) Relations between breeding system, ploidy level, and taxonomy in some advanced sections of Taraxacum. In: Hind DJN, Beentje HJ (eds) In: Compositae: systematics. Proceedings of the international Compositae conference. Royal Botanic Gardens, Kew, pp 665–677

  • Garoia F, Guarniero I, Grifoni D, Marzola S, Tinti F (2007) Comparative analysis of AFLPs and SSRs efficiency in resolving population genetic structure of Mediterranean Solea vulgaris. Mol Ecol 16:1377–1387

    Article  PubMed  CAS  Google Scholar 

  • Gaudeul M, Till-Bottraud I, Barjon F, Manel S (2004) Genetic diversity and differentiation in Eryngium alpinum L. (Apiaceae): comparison of AFLP and microsatellite markers. Heredity 92:508–518

    Article  PubMed  CAS  Google Scholar 

  • Gornall RJ (1999) Population genetic structure in agamospermous plants. In: Hollingsworth PM, RM Bateman, RJ Gornall (eds) Molecular systematics and plant evolution. Taylor and Francis, Londres, pp 118–138

  • Gould FW (1958) Chromosome numbers in southwestern grasses. Am J Bot 45:757–767

    Article  Google Scholar 

  • Gould FW (1968) Chromosome numbers of Texas grasses. Can J Bot 47:315–1325

    Google Scholar 

  • Guitián P (1998) Latitudinal variation in the fruiting phenology of a bird-dispersed plant (shape Crataegus monogyna) in Western Europe. Plant Ecol 137:139–142

    Article  Google Scholar 

  • Hojsgaard D, Schegg E, Valls JFM, Martínez EJ, Quarin CL (2008) Sexuality, apomixis, ploidy levels, and genomic relationships among four Paspalum species of the subgenus Anachyris (Poaceae). Flora 203:535–547

    Article  Google Scholar 

  • Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171:525–538

    PubMed  Google Scholar 

  • Hörandl E, Greilhuber J (2002) Diploid and autotetraploid sexuals and their relationship to apomicts in the Ranunculus cassubicus group: insights from DNA content and isozyme variation. Plant Syst Evol 234:85–100

    Article  Google Scholar 

  • Hörandl E, Paun O (2007) Patterns and sources of genetic diversity in apomictic plants: implications for evolutionary potentials and ecology. In: Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. ARG-Gantner Ruggell, pp 169–174

  • Hörandl E, Dobes C, Lambrou M (1997) Chromosomen- und Pollenuntersuchungen an osterreichischen Arten des apomiktischen Ranunculus auricomus-Komplexes. Bot Helv 107:195–209

    Google Scholar 

  • Hörandl E, Jakubowsky G, Dobes C (2001) Isozyme and morphological diversity within apomictic and sexual taxa of the Ranunculus auricomus complex. Plant Syst Evol 226:165–185

    Article  Google Scholar 

  • Houliston GJ, Chapman HM (2004) Reproductive strategy and population variability in the facultative apomict Hieracium pilosella (Asteraceae). Am J Bot 91:37–44

    Article  PubMed  Google Scholar 

  • Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. Theor Appl Genet 86:927–934

    Article  CAS  Google Scholar 

  • Kao RH (2007) Asexuality and the coexistence of cytotypes. New Phytol 175:764–772

    Article  PubMed  Google Scholar 

  • Lo EYY, Stefanović S, Dickinson TA (2009) Population genetic structure of diploid sexual and polyploid apomictic hawthorns (Crataegus; Rosaceae) in the Pacific Northwest. Mol Ecol 18:1145–1160

    Article  PubMed  CAS  Google Scholar 

  • Majeský Ľ, Vašut RJ, Kitner M, Trávníček B (2012) The pattern of genetic variability in apomictic clones of Taraxacum officinale indicates the alternation of asexual and sexual histories of apomicts. PLoS ONE 7(8):e41868. doi:10.1371/journal.pone.0041868

    Article  PubMed  Google Scholar 

  • Meirmans PG (2006) Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60:2399–2402

    PubMed  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Moraes Fernandes MIB De, Barreto I, Salzano FM, Sacchet AMOF (1974) Cytologycal and evolutionary relationships in Brazilian forms of Paspalum (Gramineae). Caryologia 27:455-465

  • Moreno-Perez E, Garcia-Velazquez A, Avendano-Arrazate CH (2009) Estudio citológico en poblaciones diploides y poliploides del género Tripsacum. Interciencia 34:791–795

    Google Scholar 

  • Morrone O, Escobar A, Zuloaga FO (2006) Chromosome studies in American Panicoideae (Poaceae). Ann Miss Bot Gard 93:647–657

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  • Norrmann GA, Quarin CL, Burson BL (1989) Cytogenetics and reproductive behavior of different chromosome races in six Paspalum species. J Hered 80:24–28

    Google Scholar 

  • Norrmann GA, Bovo OA, Quarin CL (1994) Post-zygotic seed abortion in sexual diploid X apomictic tetraploid intraspecific Paspalum crosses. Aust J Bot 42:449–456

    Article  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Nybom H (2007) Unique reproduction in dogroses (Rosa sect. Caninae) maintains successful and highly heterozygous genotypes. In: Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms, and perspectives. ARG-Gantner Ruggell, pp 281–298

  • Ortiz JPA, Pessino SC, Leblanc O, Hayward MD, Quarin CL (1997) Genetic fingerprinting for determining the mode of reproduction in Paspalum notatum, a subtropical apomictic forage grass. Theor Appl Genet 95:850–856

    Article  CAS  Google Scholar 

  • Pagliarini MS, Carraro LR, Freitas PM, Adamowski EV, Batista LAR, Valls JFM (2001) Cytogenetic characterization of Brazilian Paspalum accessions. Hereditas 135:27–34

    Article  PubMed  CAS  Google Scholar 

  • Palacios C, Gonzalez-Candelas F (1997) Analysis of population genetic structure and variability using RAPD markers in the endemic and endangered Limonium dufourii (Plumbaginaceae). Mol Ecol 6:1107–1121

    Article  PubMed  CAS  Google Scholar 

  • Paun O, Greilhuber J, Temsch E, Hörandl E (2006) Patterns, sources and ecological implications of clonal diversity in apomictic Ranunculus carpaticola (Ranunculus auricomus complex, Ranunculaceae). Mol Ecol 15:897–910

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pernès J (1975) Organization evolution d’un groupe agamique: la section des Maximae du genre. Panicum (Graminees). ORSTOM, Paris, PP 1–106

  • Pupilli F, Cáceres ME, Quarin CL, Arcioni S (1997) Segregation analysis of RFLP markers reveals a tetrasomic inheritance in apomictic Paspalum simplex. Genome 40:822–828

    Article  PubMed  CAS  Google Scholar 

  • Quarin CL (1992) The nature of apomixis and its origin in panicoid grasses. Apomixis Newsl 5:8–15

    Google Scholar 

  • Quarín CL (1977) Recuentos cromosómicos en gramíneas de Argentina subtropical. Hickenia 1:73–78

    Google Scholar 

  • Quarin CL, Burson BL (1991) Cytology of sexual and apomictic Paspalum species. Cytologia 56:223–228

    Article  Google Scholar 

  • Quarin CL, Hanna WW (1980) Effect of three ploidy levels on meiosis and mode of reproduction in Paspalum hexastachyum. Crop Sci 20:69–75

    Article  Google Scholar 

  • Quarin CL, Lombardo EP (1986) Niveles de ploidía y distribución geográfica de Paspalum quadrifarium (Gramineae). Mendeliana 7:101–107

    Google Scholar 

  • Quarin CL, Norrmann GA (1987) Relaciones entre el número de cromosomas, su comportamiento en la meiosis y el sistema reproductivo del genero Paspalum. In: Anales del IV Congreso Latinoamericano de Botánica, Bogota, pp 25–35

  • Quarin CL, Hanna WW, Fernández A (1982) Genetic studies in diploid and tetraploid Paspalum species. Embryo sac development, chromosome behavior, and fertility in P. cromyorrhizon, P. laxum, and P. proliferum. J Hered 73:254–256

    Google Scholar 

  • Quarin CL, Norrmann GA, Espinoza F (1998) Evidence for autoploidy in apomictic Paspalum rufum. Hereditas 129:119–124

    Article  Google Scholar 

  • Rebozzio RN, Sartor ME, Quarin CL, Espinoza F (2011) Residual sexuality and its seasonal variation in natural apomictic Paspalum notatum accessions. Biol Plant 55(2):391–395

    Article  CAS  Google Scholar 

  • Reeder JR (1967) Notes on Mexican grasses VI. Miscellaneous chromosome numbers. Bull Torrey Bot Club 94:1–17

    Article  Google Scholar 

  • Reis CAO, Dall’Agnol M, Nabinger C, Schifino-Wittmann MT (2010) Morphological variation in Paspalum nicorae accessions. Sci Agric 67:143–150

    Article  Google Scholar 

  • Sartor ME, Quarin CL, Urbani MH, Espinoza F (2011) Ploidy levels and reproductive behavior in natural populations of five Paspalum species. Plant Syst Evol 293:31–41

    Article  Google Scholar 

  • Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–86

    CAS  Google Scholar 

  • Savidan Y, Pernès J (1982) Diploid–tetraploid–dihaploid cycles and evolution of Panicum maximum Jacq. Evolution 36:596–600

    Article  Google Scholar 

  • Sede S, Escobar A, Morrone O, Zuloaga FO (2010) Chromosome studies in American Paniceae (Poaceae, Panicoideae). Ann Miss Bot Gard 97(1):128–138

    Article  Google Scholar 

  • Shannon CE, Wiener W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Siena LA, Sartor ME, Espinoza F, Quarin CL, Ortiz JPA (2008) Genetic and embryological evidences of apomixis at the diploid level in Paspalum rufum support recurrent auto-polyploidization in the species. Sex Plant Reprod 21:205–215

    Article  CAS  Google Scholar 

  • Snyder LA (1953) Breeding and evaluation of forage grasses. Grass Cytology. Report Fed Exp Sta Mayaguez, Puerto Rico, p 18

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stein J, Quarin CL, Martínez EJ, Pessino SC, Ortiz JPA (2004) Tetraploid races of Paspalum notatum show polysomic inheritance and preferential chromosome pairing around the apospory-controlling locus. Theor Appl Genet 109:186–191

    Article  PubMed  CAS  Google Scholar 

  • Urbani MH, Quarin CL, Espinoza F, Penteado MIO, Rodrigues IF (2002) Cytogeography and reproduction of the Paspalum simplex polyploid complex. Plant Syst Evol 236:99–105

    Article  Google Scholar 

  • Van der Hulst RGM, Mes THM, den Nijs JCM, Bachmann K (2000) Amplified fragment length polymorphism reveal that population structure of triploid dandelions (Taraxacum officinale) exhibits both clonality and recombination. Mol Ecol 9:1–8

    Article  Google Scholar 

  • Van der Hulst RGM, Mes THM, Falque M, Stam P, den Nijs JCM, Bachmann K (2003) Genetic structure of a population sample of apomictic dandelions. Heredity 90(4):326–335

    Article  Google Scholar 

  • Van Dijk P (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos Trans R Soc Lond B Biol Sci 358:1113–1121

    Article  PubMed  Google Scholar 

  • Whitton J, Sears CJ, Bacck EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Plant Sci 169:169–182

    Article  Google Scholar 

  • Yamauchi A, Hosokawa A, Nagata H, Shimoda M (2004) Triploid bridge and role of parthenogenesis in the evolution of autoploidy. Am Nat 164:101–112

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Emeritus Henry Fribourg for critically reading the manuscript and for assistance with English. This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina, [grant number PICT 2007 00476]; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina [Grant Number PIP 112-200801-01378]. M.E. Sartor and R.N. Rebozzio received fellowships from CONICET. C.L. Quarin and F. Espinoza are career members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Sartor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sartor, M.E., Rebozzio, R.N., Quarin, C.L. et al. Patterns of genetic diversity in natural populations of Paspalum agamic complexes. Plant Syst Evol 299, 1295–1306 (2013). https://doi.org/10.1007/s00606-013-0797-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0797-7

Keywords

Navigation