Skip to main content
Log in

Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhiza is a symbiotic association formed between plant roots and soil borne fungi that alter and at times improve the production of secondary metabolites. Detailed information is available on mycorrhizal development and its influence on plants grown under various edapho-climatic conditions, however, very little is known about their influence on transformed roots that are rich reserves of secondary metabolites. This raises the question of how mycorrhizal colonization progresses in transformed roots grown in vitro and whether the mycorrhizal fungus presence influences the production of secondary metabolites. To fully understand mycorrhizal ontogenesis and its effect on root morphology, root biomass, total phenolics, rosmarinic acid, caffeic acid and antioxidant production under in vitro conditions, a co-culture was developed between three Agrobacterium rhizogenes-derived, elite-transformed root lines of Ocimum basilicum and Rhizophagus irregularis. We found that mycorrhizal ontogenesis in transformed roots was similar to mycorrhizal roots obtained from an in planta system. Mycorrhizal establishment was also found to be transformed root line-specific. Colonization of transformed roots increased the concentration of rosmarinic acid, caffeic acid and antioxidant production while no effect was observed on root morphological traits and biomass. Enhancement of total phenolics and rosmarinic acid in the three mycorrhizal transformed root lines was found to be transformed root line-specific and age dependent. We reveal the potential of R. irregularis as a biotic elicitor in vitro and propose its incorporation into commercial in vitro secondary metabolite production via transformed roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ames RN, Ingham ER, Reid CPP (1982) Ultraviolet-induced autofluorescence of arbuscular mycorrhizal root infections - an alternative to clearing and staining methods for assessing infections. Can J Microbiol 28(3):351–355. doi:10.1139/m82-052

    Article  CAS  Google Scholar 

  • Andrade SAL, Malik S, Sawaya ACHF, Bottcher A, Mazzafera P (2013) Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiol Plant 35(3):867–880. doi:10.1007/s11738-012-1130-8

    Article  CAS  Google Scholar 

  • Biermann B, Linderman RG (1981) Quantifying vesicular-arbuscular mycorrhizae: a proposed method towards standardization*. New Phytol 87:63–67. doi:10.1111/j.1469-8137.1981.tb01690.x\

    Article  Google Scholar 

  • Ceballos I, Ruiz M, Fernandez C, Pena R, Rodriguez A, Sanders IR (2013) The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS One 8(8):e70633. doi:10.1371/journal.pone.00706331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335(1–2):311–323. doi:10.1007/s11104-010-0417-z

    Article  CAS  Google Scholar 

  • Conlan XA, Stupka N, McDermott GP, Barnett NW, Francis PS (2010) Correlation between acidic potassium permanganate chemiluminescence and in vitro cell culture assay: physiologically meaningful antioxidant activity. Anal Methods 2(2):171–173. doi:10.1039/B9AY00242A

    Article  CAS  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16(7):485–494. doi:10.1007/s00572-006-0065-6

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules (Basel, Switzerland) 15(10):7313–7352. doi:10.3390/molecules15107313

    Article  CAS  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1996) In vitro mass-production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237–1242. doi:10.1016/S0953-7562(96)80186-9

    Article  Google Scholar 

  • Doner LW, Becard G (1991) Solubilization of gellan gels by chelation of cations. Biotechnol Tech 5(1):25–28. doi:10.1007/bf00152749

    Article  CAS  Google Scholar 

  • Dreyer B, Morte A, Perez-Gilabert M, Honrubia M (2006) Autofluorescence detection of arbuscular mycorrhizal fungal structures in palm roots: an underestimated experimental method. Mycol Res 110:887–897. doi:10.1016/j.mycres.2006.05.011

    Article  PubMed  Google Scholar 

  • Duckett JG, Carafa A, Ligrone R (2006) A highly differentiated glomeromycotean association with the mucilage-secreting, primitive antipodean liverwort Treubia (Treubiaceae): clues to the origins of mycorrhizas. Am J Bot 93(6):797–813. doi:10.3732/ajb.93.6.797

    Article  PubMed  Google Scholar 

  • Francis PS, Costin JW, Conlan XA, Bellomarino SA, Barnett JA, Barnett NW (2010) A rapid antioxidant assay based on acidic potassium permanganate chemiluminescence. Food Chem 122(3):926–929. doi:10.1016/j.foodchem.2010.02.050

    Article  CAS  Google Scholar 

  • Gange AC, Bower E, Stagg PG, Aplin DM, Gillam AE, Bracken M (1999) A comparison of visualization techniques for recording arbuscular mycorrhizal colonization. New Phytol 142(1):123–132. doi:10.1046/j.1469-8137.1999.00371.x

    Article  Google Scholar 

  • Glenn MG, Chew FS, Williams PH (1985) Hyphal penetration of Brassica (cruciferae) roots by a vesicular-arbuscular mycorrhizal fungus. New Phytol 99(3):463–472. doi:10.1111/j.1469-8137.1985.tb03673.x1

    Article  Google Scholar 

  • Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46(5):1887–1892. doi:10.1021/jf970975b

    Article  CAS  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104(5):1720–1725. doi:10.1073/pnas.0608136104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Beri S, Adholeya A (2013) Congruence of ribosomal DNA sequencing, fatty acid methyl ester profiles and morphology for characterization of the genus Rhizophagus (arbuscular mycorrhiza fungus). Ann Microbiol 63(4):1405–1415. doi:10.1007/s13213-013-0601-5

    Article  CAS  Google Scholar 

  • Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem 115(2):650–656. doi:10.1016/j.foodchem.2008.12.075

    Article  CAS  Google Scholar 

  • Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T (2005) Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol 139(1):329–340. doi:10.1104/pp.105.061457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Raez JA, Verhage A, Fernandez I, Garcia JM, Azcon-Aguilar C, Flors V, Pozo MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61(10):2589–2601. doi:10.1093/jxb/erq089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDermott GP, Conlan XA, Noonan LK, Costin JW, Mnatsakanyan M, Shalliker RA, Barnett NW, Francis PS (2011) Screening for antioxidants in complex matrices using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection. Anal Chim Acta 684(1–2):134–141. doi:10.1016/j.aca.2010.10.046

    Article  CAS  PubMed  Google Scholar 

  • Mrosk C, Forner S, Hause G, Kuester H, Kopka J, Hause B (2009) Composite Medicago truncatula plants harbouring Agrobacterium rhizogenes-transformed roots reveal normal mycorrhization by Glomus intraradices. J Exp Bot 60(13):3797–3807. doi:10.1093/jxb/erp220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nell M, Voetsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). J Sci Food Agric 89(6):1090–1096. doi:10.1002/jsfa.3561

    Article  CAS  Google Scholar 

  • Puri A, Adholeya A (2013) A new system using Solanum tuberosum for the co-cultivation of Glomus intraradices and its potential for mass producing spores of arbuscular mycorrhizal fungi. Symbiosis 59(2):87–97. doi:10.1007/s13199-012-0213-z

    Article  CAS  Google Scholar 

  • Russell J, Bulman S (2005) The liverwort Marchantia foliacea forms a specialized symbiosis with arbuscular mycorrhizal fungi in the genus Glomus. New Phytol 165(2):567–579. doi:10.1111/j.1469-8137.2004.01251.x

    Article  CAS  PubMed  Google Scholar 

  • Scagel CF, Lee J (2012) Phenolic composition of basil plants is differentially altered by plant nutrient status and inoculation with mycorrhizal fungi. Hortscience 47(5):660–671

    CAS  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69(1):112–146. doi:10.1016/j.phytochem.2007.06.032

    Article  CAS  PubMed  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16(3):144–158

    CAS  Google Scholar 

  • Srivastava S, Cahill DM, Conlan XA, Adholeya A (2014) A novel in vitro whole plant system for analysis of polyphenolics and their antioxidant potential in cultivars of Ocimum basilicum. J Agric Food Chem 62(41):10064–10075. doi:10.1021/jf502709e

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Adholeya A, Conlan XA, Cahill DM (2016a) Acidic potassium permanganate chemiluminescence for the determination of antioxidant potential in three cultivars of Ocimum basilicum. Plant Food Hum Nutr 71(1):72–80. doi:10.1007/s11130-016-0527-8

    Article  CAS  Google Scholar 

  • Srivastava S, Adholeya A, Conlan XA, Cahill DM (2016b) Elite hairy roots of Ocimum basilicum as a new source of rosmarinic acid and antioxidants. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-016-0973-x

    Google Scholar 

  • Thiruvengadam M, Praveen N, Maria John KM, Yang YS, Kim SH, Chung I-M (2014) Establishment of Momordica charantia hairy root cultures for the production of phenolic compounds and determination of their biological activities. Plant Cell Tissue Organ Cult 118(3):545–557. doi:10.1007/s11240-014-0506-4

    Article  CAS  Google Scholar 

  • Tiwari P, Adholeya A (2002) In vitro co-culture of two AMF isolates Gigaspora margarita and Glomus intraradices on Ri T-DNA transformed roots. FEMS Microbiol Lett 206(1):39–43. doi:10.1016/s0378-1097(01)00489-x

    Article  CAS  PubMed  Google Scholar 

  • Tiwari P, Adholeya A (2003) Host dependent differential spread of Glomus intraradices on various Ri T- DNA transformed roots in vitro. Mycol Prog 2(3):171–177. doi:10.1007/s11557-006-0055-2

    Article  Google Scholar 

  • Toussaint JP, St-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 50(4):251–260. doi:10.1139/w04-009

    Article  CAS  PubMed  Google Scholar 

  • Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17(4):291–297. doi:10.1007/s00572-006-0104-31

    Article  CAS  PubMed  Google Scholar 

  • Toussaint JP, Kraml M, Nell M, Smith SE, Smith FA, Steinkellner S, Schmiderer C, Vierheilig H, Novak J (2008) Effect of Glomus mosseae on concentrations of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f.sp basilici. Plant Pathol 57(6):1109–1116. doi:10.1111/j.1365-3059.2008.01895.x

    Article  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64(12):5004–5007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weremczuk-Jeżyna I, Grzegorczyk-Karolak I, Frydrych B, Królicka A, Wysokińska H (2013) Hairy roots of Dracocephalum moldavica: rosmarinic acid content and antioxidant potential. Acta Physiol Plant 35(7):2095–2103. doi:10.1007/s11738-013-1244-7

    Article  Google Scholar 

  • Zhang R-Q, Zhu H-H, Zhao H-Q, Yao Q (2013) Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J Plant Physiol 170(1):74–79. doi:10.1016/j.jplph.2012.08.022

    Article  CAS  PubMed  Google Scholar 

  • Zubek S, Rola K, Szewczyk A, Majewska ML, Turnau K (2015) Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil 390(1):129–142. doi:10.1007/s11104-015-2388-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Infrastructure support and financial assistance provided by TERI, India and Deakin University, Australia is duly acknowledged. Deakin University provided a post graduate scholarship to SS. Technical assistance provided by Ms Priyanka Gupta, Ms Shikha Choudhary and Ms Deep Rajni for CLSM, SEM and HPLC analysis is highly acknowledged. We are highly thankful to Dr Prakashkiran S Pawar for his support during statistical analysis of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Adholeya.

Ethics declarations

Funding

This study was funded by Deakin University, Australia.

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human or animal subjects.

Informed consent

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Mycorrhizal structures formed in an in planta system. (DOC 3.82 MB)

Fig. S2

HPLC chromatogram of mycorrhizal root extract of HR 4 (DOC 35.5 KB)

Table S1

One-way ANOVA results showing F, P and Levene’s values for all three transformed root lines for all parameters (DOC 62.0 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Conlan, X.A., Cahill, D.M. et al. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system. Mycorrhiza 26, 919–930 (2016). https://doi.org/10.1007/s00572-016-0721-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-016-0721-4

Keywords

Navigation