Skip to main content

Advertisement

Log in

Periostin promotes hepatic fibrosis in mice by modulating hepatic stellate cell activation via αv integrin interaction

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Periostin is a matricellular protein that serves as a ligand for integrins and is required for tissue remodeling and fibrosis. We investigated the role of periostin in hepatic fibrosis and the mechanisms involved.

Methods

Primary hepatic stellate cells (HSCs) and the HSC-immortalized cell line LX2 were used to study the profibrotic property of periostin and the interaction of periostin with integrins. Wild-type and periostin-deficient (periostin−/−) mice were subjected to two distinct models of liver fibrosis induced by hepatotoxic (carbon tetrachloride or thioacetamide) or cholestatic (3.5-diethoxycarbonyl-1.4-dihydrocollidine) injury.

Results

Periostin expression in HSCs and LX2 cells increased in association with their activation. Gene silencing of periostin resulted in a significant reduction in the levels of profibrotic markers. In addition to enhanced cell migration in response to periostin, LX2 cells incubated on periostin showed significant induction of α-smooth muscle actin and collagen, indicating a profibrotic property. An antibody targeting αvβ5 and αvβ3 integrins suppressed cell attachment to periostin by 60 and 30 % respectively, whereas anti-α5β1 antibody had no effect. Consistently, αv integrin-silenced LX2 cells exhibited decreased attachment to periostin, with a significant reduction in the levels of profibrotic markers. Moreover, these profibrotic effects of periostin were observed in the mouse models. In contrast to extensive collagen deposition in wild-type mice, periostin−/− mice developed less noticeable hepatic fibrosis induced by hepatotoxic and cholestatic liver injury. Accordingly, the profibrotic markers were significantly reduced in periostin−/− mice.

Conclusion

Periostin exerts potent profibrotic activity mediated by αv integrin, suggesting the periostin–αv integrin axis as a novel therapeutic target for hepatic fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Col1α1:

Collagen type I, alpha 1

DDC:

3,5-Diethoxycarbonyl-1,4-dihydrocollidine

DMEM:

Dulbecco’s modified Eagle’s medium

ECM:

Extracellular matrix

FBS:

Fetal bovine serum

HSC:

Hepatic stellate cell

siRNA:

Small interfering RNA

α-SMA:

α-Smooth muscle actin

TAA:

Thioacetamide

TGF:

Transforming growth factor

TIMP-1:

Tissue inhibitor of metalloproteinase 1

References

  1. Takeshita S, Kikuno R, Tezuka K, et al. Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J. 1993;294(1):271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Horiuchi K, Amizuka N, Takeshita S, et al. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res. 1999;14:1239–49.

    Article  CAS  PubMed  Google Scholar 

  3. Izuhara K, Arima K, Ohta S, et al. Periostin in allergic inflammation. Allergol Int. 2014;63:143–51.

    Article  CAS  PubMed  Google Scholar 

  4. Conway SJ, Izuhara K, Kudo Y, et al. The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci. 2014;71:1279–88.

    Article  CAS  PubMed  Google Scholar 

  5. Oka T, Xu J, Kaiser RA, et al. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res. 2007;3(101):313–21.

    Article  Google Scholar 

  6. Shimazaki M, Nakamura K, Kii I, et al. Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med. 2008;205:295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Conway SJ, Molkentin JD. Periostin as a heterofunctional regulator of cardiac development and disease. Curr Genom. 2008;9:548–55.

    Article  CAS  Google Scholar 

  8. Kühn B, del Monte F, Hajjar RJ, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13:962–9.

    Article  PubMed  Google Scholar 

  9. Naik PK, Bozyk PD, Bentley JK, et al. Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2012;303:L1046–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Elliott CG, Wang J, Guo X, et al. Periostin modulates myofibroblast differentiation during full-thickness cutaneous wound repair. J Cell Sci. 2012;125(1):121–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uchida M, Shiraishi H, Ohta S, et al. Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012;46:677–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishikawa K, Yoshida S, Nakao S, et al. Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J. 2014;28:131–42.

    Article  CAS  PubMed  Google Scholar 

  13. Iwaisako K, Taura K, Koyama Y, et al. Strategies to detect hepatic myofibroblasts in liver cirrhosis of different etiologies. Curr Pathobiol Rep. 2014;2:209–15.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Iwaisako K, Jiang C, Zhang M, et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A. 2014;111:E3297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mederacke I, Hsu CC, Troeger JS, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4:2823.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang X, Xin J, Shi Y, et al. Assessing activation of hepatic stellate cells by 99mTc-3PRGD2 scintigraphy targeting integrin αvβ3: a feasibility study. Nucl Med Biol. 2015;42:250–5.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou X, Murphy FR, Gehdu N, et al. Engagement of αvβ3 integrin regulates proliferation and apoptosis of hepatic stellate cells. J Biol Chem. 2004;279:23996–4006.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou X, Jamil A, Nash A, et al. Impaired proteolysis of collagen I inhibits proliferation of hepatic stellate cells: implications for regulation of liver fibrosis. J Biol Chem. 2006;281:39757–65.

    Article  CAS  PubMed  Google Scholar 

  19. Hong L, Shejiao D, Fenrong C, et al. Periostin down-regulation attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1. J Cell Mol Med. 2015;19:2462–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huang Y, Liu W, Xiao H, et al. Matricellular protein periostin contributes to hepatic inflammation and fibrosis. Am J Pathol. 2015;185:786–97.

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Wu S, Xiong S, et al. Deficiency of periostin protects mice against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis. J Hepatol. 2015;62:495–7.

    Article  CAS  PubMed  Google Scholar 

  22. Rios H, Koushik SV, Wang H, et al. Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol. 2005;25:11131–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miyahara T, Schrum L, Rippe R, et al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem. 2000;275:35715–22.

    Article  CAS  PubMed  Google Scholar 

  24. Xu L, Hui AY, Albanis E, et al. Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut. 2005;54:142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yokosaki Y, Palmer EL, Prieto AL, et al. The integrin α9β1 mediates cell attachment to a non-RGD site in the third fibronectin type III repeat of tenascin. J Biol Chem. 1994;269:26691–6.

    CAS  PubMed  Google Scholar 

  26. Nabeshima Y, Tazuma S, Kanno K, et al. Deletion of angiotensin II type I receptor reduces hepatic steatosis. J Hepatol. 2009;50:1226–35.

    Article  CAS  PubMed  Google Scholar 

  27. Okamoto M, Hoshino T, Kitasato Y, et al. Periostin, a matrix protein, is a novel biomarker for idiopathic interstitial pneumonias. Eur Respir J. 2011;37:1119–27.

    Article  CAS  PubMed  Google Scholar 

  28. Lorts A, Schwanekamp JA, Baudino TA, et al. Deletion of periostin reduces muscular dystrophy and fibrosis in mice by modulating the transforming growth factor-β pathway. Proc Natl Acad Sci U S A. 2012;109:10978–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morris AH, Kyriakides TR. Matricellular proteins and biomaterials. Matrix Biol. 2014;37:183–91.

    Article  CAS  PubMed  Google Scholar 

  30. Urtasun R, Lopategi A, George J, et al. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin αVβ3 engagement and PI3K/pAkt/NFκB signaling. Hepatology. 2012;55:594–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang X, Lopategi A, Ge X, et al. Osteopontin induces ductular reaction contributing to liver fibrosis. Gut. 2014;63:1805–18.

    Article  CAS  PubMed  Google Scholar 

  32. El-Karef A, Yoshida T, Gabazza EC, et al. Deficiency of tenascin-C attenuates liver fibrosis in immune-mediated chronic hepatitis in mice. J Pathol. 2007;211:86–94.

    Article  CAS  PubMed  Google Scholar 

  33. Gressner OA, Gressner AM. Connective tissue growth factor: a fibrogenic master switch in fibrotic liver diseases. Liver Int. 2008;28:1065–79.

    Article  CAS  PubMed  Google Scholar 

  34. Huang G, Brigstock DR. Regulation of hepatic stellate cells by connective tissue growth factor. Front Biosci (Landmark Ed). 2012;17:2495–507.

    Article  Google Scholar 

  35. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25.

    Article  CAS  PubMed  Google Scholar 

  36. Patsenker E, Popov Y, Wiesner M, et al. Pharmacological inhibition of the vitronectin receptor abrogates PDGF-BB-induced hepatic stellate cell migration and activation in vitro. J Hepatol. 2007;46:878–87.

    Article  CAS  PubMed  Google Scholar 

  37. Iwamoto H, Sakai H, Nawata H. Inhibition of integrin signaling with Arg-Gly-Asp motifs in rat hepatic stellate cells. J Hepatol. 1998;29:752–9.

    Article  CAS  PubMed  Google Scholar 

  38. Gillan L, Matei D, Fishman DA, et al. Periostin secreted by epithelial ovarian carcinoma is a ligand for αVβ3 and αVβ5 integrins and promotes cell motility. Cancer Res. 2002;62:5358–64.

    CAS  PubMed  Google Scholar 

  39. Utispan K, Sonongbua J, Thuwajit P, et al. Periostin activates integrin α5β1 through a PI3K/AKT-dependent pathway in invasion of cholangiocarcinoma. Int J Oncol. 2012;41:1110–8.

    CAS  PubMed  Google Scholar 

  40. Henderson NC, Arnold TD, Katamura Y, et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med. 2013;19:1617–24.

    Article  CAS  PubMed  Google Scholar 

  41. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–80.

    Article  CAS  PubMed  Google Scholar 

  42. Honsawek S, Udomsinprasert W, Vejchapipat P, et al. Elevated serum periostin is associated with liver stiffness and clinical outcome in biliary atresia. Biomarkers. 2015;20:157–61.

    Article  CAS  PubMed  Google Scholar 

  43. Fujimoto K, Kawaguchi T, Nakashima O, et al. Periostin, a matrix protein, has potential as a novel serodiagnostic marker for cholangiocarcinoma. Oncol Rep. 2011;25:1211–6.

    Article  PubMed  Google Scholar 

  44. Lu Y, Liu X, Jiao Y, et al. Periostin promotes liver steatosis and hypertriglyceridemia through downregulation of PPARα. J Clin Investig. 2014;124:3501–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pi L, Robinson PM, Jorgensen M, et al. Connective tissue growth factor and integrin αvβ6: a new pair of regulators critical for ductular reaction and biliary fibrosis in mice. Hepatology. 2015;61:678–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li X, Benjamin IS, Alexander B. Reproducible production of thioacetamide-induced macronodular cirrhosis in the rat with no mortality. J Hepatol. 2002;36:488–93.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this study was presented at 114th Annual Meeting and the 116th Annual Meeting of the American Gastroenterological Association. This work was supported by a Grant-in-Aid from the Ministry of Health, Labor and Welfare of Japan to Susumu Tazuma and in part by the Japan Society for the Promotion of Science KAKENHI grants Scientific Research (B) 26293174 and Challenging Exploratory Research 24659367 to Yasuyuki Yokosaki. Experiments were conducted in part at the Analysis Center of Life Science, Hiroshima University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keishi Kanno.

Ethics declarations

Conflict of interest

Kenji Izuhara received a research grant from Chugai Pharmaceutical Co. Ltd and unrestricted grant from Shino-test Co. Ltd, and serves as a consultant to Chugai Pharmaceutical Co. Ltd. and AQUA Therapeutics Co. Ltd.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 562 kb)

Supplementary material 2 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiyama, A., Kanno, K., Nishimichi, N. et al. Periostin promotes hepatic fibrosis in mice by modulating hepatic stellate cell activation via αv integrin interaction. J Gastroenterol 51, 1161–1174 (2016). https://doi.org/10.1007/s00535-016-1206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-016-1206-0

Keywords

Navigation