Skip to main content

Advertisement

Log in

The biology and regulation of corneodesmosomes

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The stratum corneum of the epidermis is composed of stacked dead corneocytes embedded in lipid layers and is the main protective shield of the skin. The thickness of the stratum corneum is maintained fairly constantly through the balance between new cell creation and old cell removal. Corneodesmosomes are the main intercellular adhesive structures in the stratum corneum. They are transformed from desmosomes at the most superficial layer of the stratum granulosum of the epidermis. The major compositional distinction from desmosomes is the presence of corneodesmosin in the extracellular portion. Furthermore, corneodesmosomes are structurally different from desmosomes in that (1) they do not have a tri-lamellar desmoglea but rather one that is homogeneously electron-dense and (2) attachment plaques are integrated into a part of the cornified cell envelopes. When the extracellular regions of corneodesmosomes are fully degraded, desquamation occurs. The degradation process of corneodesmosomes is carefully controlled by a number of proteases and their inhibitors. The most important proteases involved in this process are the kallikrein-related peptidases. Their main inhibitor is the lympho-epithelial Kazal-type related inhibitor. Other regulators of this process include matriptase, meprin and mesotrypsin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beaufort N, Plaza K, Utzschneider D, Schwarz A, Burkhart JM, Creutzburg S, Debela M, Schmitt M, Ries C, Magdolen V (2010) Interdependence of kallikrein-related peptidases in proteolytic networks. Biol Chem 391:581–587

    Article  CAS  PubMed  Google Scholar 

  • Bernard D, Mehul B, Thomas-Collignon A, Simonetti L, Remy V, Bernard MA, Schmidt R (2003) Analysis of proteins with caseinolytic activity in a human stratum corneum extract revealed a yet unidentified cysteine protease and identified the so-called "stratum corneum thiol protease" as cathepsin L2. J Invest Dermatol 120:592–600

    Article  CAS  PubMed  Google Scholar 

  • Borgono CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, Clayman GL, Sotiropoulou G, Diamandis EP (2007) A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem 282:3640–3652

    Article  CAS  PubMed  Google Scholar 

  • Brattsand M, Stefansson K, Lundh C, Haasum Y, Egelrud T (2005) A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol 124:198–203

    Article  CAS  PubMed  Google Scholar 

  • Brattsand M, Stefansson K, Hubiche T, Nilsson SK, Egelrud T (2009) SPINK9: a selective, skin-specific Kazal-type serine protease inhibitor. J Invest Dermatol 129:1656–1665

    Article  CAS  PubMed  Google Scholar 

  • Caubet C, Jonca N, Brattsand M, Guerrin M, Bernard D, Schmidt R, Egelrud T, Simon M, Serre G (2004) Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J Invest Dermatol 122:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Chapman SJ, Walsh A (1990) Desmosomes, corneosomes and desquamation. An ultrastructural study of adult pig epidermis. Arch Dermatol Res 282:304–310

    Article  CAS  PubMed  Google Scholar 

  • Debela M, Goettig P, Magdolen V, Huber R, Schechter NM, Bode W (2007a) Structural basis of the zinc inhibition of human tissue kallikrein 5. J Mol Biol 373:1017–1031

    Article  CAS  PubMed  Google Scholar 

  • Debela M, Hess P, Magdolen V, Schechter NM, Steiner T, Huber R, Bode W, Goettig P (2007b) Chymotryptic specificity determinants in the 1.0 Å structure of the zinc-inhibited human tissue kallikrein 7. Proc Natl Acad Sci U S A 104:16086–16091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, Wagberg F, Brattsand M, Hachem JP, Leonardsson G, Hovnanian A (2007) LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 18:3607–3619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elias PM, Crumrine D, Rassner U, Hachem JP, Menon GK, Man W, Choy MH, Leypoldt L, Feingold KR, Williams ML (2004) Basis for abnormal desquamation and permeability barrier dysfunction in RXLI. J Invest Dermatol 122:314–319

    Article  CAS  PubMed  Google Scholar 

  • Fischer J, Meyer-Hoffert U (2013) Regulation of kallikrein-related peptidases in the skin—from physiology to diseases to therapeutic options. Thromb Haemost 110:442–449

    Article  CAS  PubMed  Google Scholar 

  • Fischer J, Koblyakova Y, Latendorf T, Wu Z, Meyer-Hoffert U (2013) Cross-linking of SPINK6 by transglutaminases protects from epidermal proteases. J Invest Dermatol 133:1170–1177

    Article  CAS  PubMed  Google Scholar 

  • Franzke C-W, Baici A, Bartels J, Christophers E, Wiedow O (1996) Antileukoprotease inhibits stratum corneum chymotryptic enzyme. Evidence for a regulative function in desquamation. J Biol Chem 271:1886-1890

    Google Scholar 

  • Galliano MF, Toulza E, Gallinaro H, Jonca N, Ishida-Yamamoto A, Serre G, Guerrin M (2006) A novel protease inhibitor of the alpha2-macroglobulin family expressed in the human epidermis. J Biol Chem 281:5780–5789

    Article  CAS  PubMed  Google Scholar 

  • Haftek M, Callejon S, Sandjeu Y, Padois K, Falson F, Pirot F, Portes P, Demarne F, Jannin V (2011) Compartmentalization of the human stratum corneum by persistent tight junction-like structures. Exp Dermatol 20:617–621

    Article  CAS  PubMed  Google Scholar 

  • Heiker JT, Klöting N, Kovacs P, Kuettner EB, Sträter N, Schultz S, Kern M, Stumvoll M, Blüher M, Beck-Sickinger AG (2013) Vaspin inhibits kallikrein 7 by serpin mechanism. Cell Mol Life Sci 70:2569–2583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horikoshi I, Uchiwa B (1999) Role of endogenous cathepsin D-like and chymotrypsin-like proteolysis in human epidermal desquamation. Br J Dermatol 141:453–459

    Article  CAS  PubMed  Google Scholar 

  • Igarashi S, Takizawa T, Yasuda Y, Uchiwa H, Hayashi S, Brysk H, Robinson JM, Yamamoto K, Brysk MM, Horikoshi T (2004) Cathepsin D, but not cathepsin E, degrades desmosomes during epidermal desquamation. Br J Dermatol 151:355–361

    Article  CAS  PubMed  Google Scholar 

  • Igawa S, Kishibe M, Murakami M, Honma M, Takahashi H, Iizuka H, Ishida-Yamamoto A (2011) Tight junctions in the stratum corneum explain spatial differences in corneodesmosome degradation. Exp Dermatol 20:53–57

    Article  PubMed  Google Scholar 

  • Ishida-Yamamoto A, Igawa S (2014) Genetic skin diseases related to desmosomes and corneodesmosomes. J Dermatol Sci 74:99–105

    Article  CAS  PubMed  Google Scholar 

  • Ishida-Yamamoto A, Eady RA, Watt FM, Roop DR, Hohl D, Iizuka H (1996) Immunoelectron microscopic analysis of cornified cell envelope formation in normal and psoriatic epidermis. J Histochem Cytochem 44:167–175

    Article  CAS  PubMed  Google Scholar 

  • Ishida-Yamamoto A, Deraison C, Bonnart C, Bitoun E, Robinson R, O'Brien TJ, Wakamatsu K, Ohtsubo S, Takahashi H, Hashimoto Y, Dopping-Hepenstal PJ, McGrath JA, Iizuka H, Richard G, Hovnanian A (2005) LEKTI is localized in lamellar granules, separated from KLK5 and KLK7, and is secreted in the extracellular spaces of the superficial stratum granulosum. J Invest Dermatol 124:360–366

    Article  CAS  PubMed  Google Scholar 

  • Ishida-Yamamoto A, Igawa S, Kishibe M (2011) Order and disorder in corneocyte adhesion. J Dermatol 38:645–654

    Article  PubMed  Google Scholar 

  • Ishida-Yamamoto A, Kishibe M, Murakami M, Honma M, Takahashi H, Iizuka H (2012) Lamellar granule secretion starts before the establishment of tight junction barrier for paracellular tracers in mammalian epidermis. PLoS One 7:e31641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jonca N, Leclerc EA, Caubet C, Simon M, Guerrin M, Serre G (2011) Corneodesmosomes and corneodesmosin: from the stratum corneum cohesion to the pathophysiology of genodermatoses. Eur J Dermatol 21 (Suppl 2):35–42

    CAS  PubMed  Google Scholar 

  • Kantyka T, Fischer J, Wu Z, Declercq W, Reiss K, Schröder JM, Meyer-Hoffert U (2011) Inhibition of kallikrein-related peptidases by the serine protease inhibitor of Kazal-type 6. Peptides 32:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W, Engelholm LH, Behrendt N, Bugge TH (2002) Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 21:3765–3779

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Hoffert U, Wu Z, Schroder JM (2009) Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor. PLoS One 4:e4372

    Article  PubMed Central  PubMed  Google Scholar 

  • Meyer-Hoffert U, Wu Z, Kantyka T, Fischer J, Latendorf T, Hansmann B, Bartels J, He Y, Gläser R, Schröder JM (2010) Isolation of SPINK6 in human skin: selective inhibitor of kallikrein-related peptidases. J Biol Chem 285:32174–32181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyai M, Matsumoto Y, Yamanishi H, Yamamoto-Tanaka M, Tsuboi R, Hibino T (2014) Keratinocyte-specific mesotrypsin contributes to the desquamation process via kallikrein activation and LEKTI degradation. J Invest Dermatol 134:1665–1674

    Article  CAS  PubMed  Google Scholar 

  • Nakane H, Ishida-Yamamoto A, Takahashi H, Iizuka H (2002) Elafin, a secretory protein, is cross-linked into the cornified cell envelopes from the inside of psoriatic keratinocytes. J Invest Dermatol 119:50–55

    Article  CAS  PubMed  Google Scholar 

  • Naoe Y, Hata T, Tanigawa K, Kimura H, Masunaga T (2010) Bidimensional analysis of desmoglein 1 distribution on the outermost corneocytes provides the structural and functional information of the stratum corneum. J Dermatol Sci 57:192–198

    Article  CAS  PubMed  Google Scholar 

  • Ohler A, Debela M, Wagner S, Magdolen V, Becker-Pauly C (2010) Analyzing the protease web in skin: meprin metalloproteases are activated specifically by KLK4, 5 and 8 vice versa leading to processing of proKLK7 thereby triggering its activation. Biol Chem 391:455–460

    Article  CAS  PubMed  Google Scholar 

  • Raknerud N (1975) The ultrastructure of the interfollicular epidermis of the hairless (hr/hr) mouse. III. Desmosomal transformation during keratinization. J Ultrastruct Res 52:32–51

    Article  CAS  PubMed  Google Scholar 

  • Rawlings AV, Voegeli R (2013) Stratum corneum proteases and dry skin conditions. Cell Tissue Res 351:217–235

    Article  CAS  PubMed  Google Scholar 

  • Sales KU, Masedunskas A, Bey AL, Rasmussen AL, Weigert R, List K, Szabo R, Overbeek PA, Bugge TH (2010) Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat Genet 42:676–683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scott FL, Sun J, Whisstock JC, Kato K, Bird PI (2007) SerpinB6 is an inhibitor of kallikrein-8 in keratinocytes. J Biochem 142:435–442

    Article  CAS  PubMed  Google Scholar 

  • Sotiropoulou G, Pampalakis G, Diamandis EP (2009) Functional roles of human kallikrein-related peptidases. J Biol Chem 284:32989–32994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ya-Xian Z, Suetake T, Tagami H (1999) Number of cell layers of the stratum corneum in normal skin—relationship to the anatomical location on the body, age, sex and physical parameters. Arch Dermatol Res 291:555–559

    Article  CAS  PubMed  Google Scholar 

  • Zeeuwen PL, Ishida-Yamamoto A, van Vlijmen-Willems IM, Cheng T, Bergers M, Iizuka H, Schalkwijk J (2007) Colocalization of cystatin M/E and cathepsin V in lamellar granules and corneodesmosomes suggests a functional role in epidermal differentiation. J Invest Dermatol 127:120–128

    Article  CAS  PubMed  Google Scholar 

  • Zeeuwen PL, Cheng T, Schalkwijk J (2009) The biology of cystatin M/E and its cognate target proteases. J Invest Dermatol 129:1327–1338

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors have no conflicting interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akemi Ishida-Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida-Yamamoto, A., Igawa, S. The biology and regulation of corneodesmosomes. Cell Tissue Res 360, 477–482 (2015). https://doi.org/10.1007/s00441-014-2037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2037-z

Keywords

Navigation