Skip to main content

Advertisement

Log in

Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neurons have highly developed Ca2+ signalling systems responsible for regulating many neural functions such as the generation of brain rhythms, information processing and the changes in synaptic plasticity that underpins learning and memory. The signalling mechanisms that regulate neuronal excitability are particularly important for processes such as sensory perception, cognition and consciousness. The Ca2+ signalling pathway is a key component of the mechanisms responsible for regulating neuronal excitability, information processing and cognition. Alterations in gene transcription are particularly important as they result in subtle alterations in the neuronal signalling mechanisms that have been implicated in many neural diseases. In particular, dysregulation of the Ca2+ signalling pathway has been implicated in the development of some of the major psychiatric diseases such as bipolar disorder (BPD) and schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agam G, Shamir A, Shaltiel G, Greenberg ML (2002) Myo-inositol-1-phosphate (MIP) synthase: a possible new target for antibipolar drugs. Bipolar Disord 4 (Suppl 1):15–20

    PubMed  Google Scholar 

  • Agam G, Bersudsky Y, Berry GT, Moechars D, Lavi-Avnon Y, Belmaker RH (2009) Knockout mice in understanding the mechanism of action of lithium. Biochem Soc Trans 37:1121–1125

    CAS  PubMed  Google Scholar 

  • Alexandre C, Andermann ML, Scammell TE (2013) Control of arousal by the orexin neurons. Curr Opin Neurobiol 23:752–759

    CAS  PubMed  Google Scholar 

  • Allison JH, Stewart MA (1971) Reduced brain inositol in lithium-treated rats. Nat New Biol 233:267–268

    CAS  PubMed  Google Scholar 

  • Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B, Schulze TG, Cichon S, Rietschel M, Nöthen MM, Georgi A, Schumacher J, Schwarz M, Abou Jamra R, Höfels S, Propping P, Satagopan J, Detera-Wadleigh SD, Hardy J, McMahon FJ (2008) A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 13:197–207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Behrens MM, Sejnowski TJ (2009) Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex? Neuropharmacology 57:193–200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belmaker RH, Bersudsky Y, Agam G, Levine J, Kofman O (1996) How does lithium work on manic depression? Clinical and psychological correlates of the inositol theory. Annu Rev Med 47:47–56

    CAS  PubMed  Google Scholar 

  • Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H, Agam G (2007) A CSF and post-mortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr Res 90:41–51

    PubMed  Google Scholar 

  • Berk M, Ng F, Dean O, Dodd S, Bush AI (2008) Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci 29:346–351

    CAS  PubMed  Google Scholar 

  • Berk M, Malhi GS, Gray LJ, Dean OM (2013) The promise of N-acetylcysteine in neuropsychiatry. Trend Pharm Sci 34:167–177

    CAS  Google Scholar 

  • Berridge MJ (2012a) Calcium signalling remodelling and disease. Biochem Soc Trans 40:297–309

    CAS  PubMed  Google Scholar 

  • Berridge MJ (2012b) Dysregulation of neural calcium signalling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 6:1–12

    Google Scholar 

  • Berridge MJ (2014) Calcium regulation of neural rhythms, memory and Alzheimer’s disease. J Physiol (Lond) 592:281–293

    CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206:587–595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59:411–419

    CAS  PubMed  Google Scholar 

  • Bigos KL, Mattay VS, Callicott JH, Straub RE, Vakkalanka R, Kolachana B, Hyde TM, Lipska BK, Kleinman JE, Weinberger DR (2010) Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry 67:939–945

    PubMed Central  PubMed  Google Scholar 

  • Buonanno A (2010) The neuregulin signaling pathway and schizophrenia: from genes to synapses and neural circuits. Brain Res Bull 83:122–131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang P, Orabi B, Deranieh RM, Dham M, Hoeller O, Shimshoni JA, Yagen B, Bialer M, Greenberg ML, Walker MC, Williams RSB (2012) The antiepileptic drug valproic acid and other medium-chain fatty acids acutely reduce phosphoinositide levels independently of inositol in Dictyostelium. Dis Model Mech 5:115–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang P, Walker MC, Williams RS (2014) Seizure-induced reduction in PIP3 levels contributes to seizure-activity and is rescued by valproic acid. Neurobiol Dis 62:296–306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen G, Zeng WZ, Yuan PX, Huang LD, Jiang YM, Zhao ZH (1999) The mood-stabilizing agents lithium and valproate robustly increase levels of the neuroprotective protein Bcl-2 in the CNS. J Neurochem 72:879–882

    CAS  PubMed  Google Scholar 

  • Chiu C-T, Wang Z, Hunsberger JG, Chuang D-M (2013) Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 65:105–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chumakov I, Blumenfeld M, Guerassimenko CL, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P et al (2002) Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A 99:13675–13680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corvin A, McGhee KA, Murphy K, Donohoe G, Nangle JM, Schwaiger S, Kenny N, Clarke S, Meagher D, Quinn J, Scully P, Baldwin P, Browne D, Walsh C, Waddington JL, Morris DW, Gill M (2007) Evidence for association and epistasis at the DAOA/G30 and D-amino acid oxidase loci in an Irish schizophrenia sample. Am J Med Genet B 144B:949–953

    CAS  Google Scholar 

  • Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26:363–382

    Google Scholar 

  • Cross-Disorder Group of the Psychiatric Genomics Consortium (2013) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–1379

    PubMed Central  Google Scholar 

  • Curley AA, Lewis DA (2012) Cortical basket cell dysfunction in schizophrenia. J Physiol (Lond) 590:715–724

    CAS  Google Scholar 

  • Datta S (2010) Cellular and chemical neuroscience of mammalian sleep. Sleep Med 11:431–440

    PubMed Central  PubMed  Google Scholar 

  • Dean OM, van den Buuse M, Bush AI, Copolov DL, Ng F, Dodd S, Berk M (2009) A role for glutathione in the pathophysiology of bipolar disorder and schizophrenia? Animal models and relevance to clinical practice. Curr Med Chem 16:2965–2976

    CAS  PubMed  Google Scholar 

  • Diez-Guerra FJ (2010) Neurogranin, a link between calcium/calmodulin and protein kinase C signalling in synaptic plasticity. IUBMB Life 62:597–606

    CAS  PubMed  Google Scholar 

  • Do KQ, Cabungcal JH, Frank A, Steullet P, Cuenod M (2009) Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol 19:220–230

    CAS  PubMed  Google Scholar 

  • Edlow BL, Takahashi E, Wu O, Benner T, Dai G, Bu L, Grant PE, Greer DM, Greenberg SM, Kinney HC, Folkerth RD (2012) Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol 71:531–546

    PubMed Central  PubMed  Google Scholar 

  • Eickholt BJ, Towers GJ, Ryves WJ, Eikel D, Adley K, Ylinen LM, Chadborn NH, Harwood AJ, Nau H, Williams RS (2005) Effects of valproic acid derivatives on inositol trisphosphate depletion, teratogenicity, glycogen synthase kinase-3 beta inhibition, and viral replication: a screening approach for new bipolar disorder drugs derived from the valproic acid core structure. Mol Pharmacol 67:1426–1433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erk S, Meyer-Lindenberg A, Schnell K, Opitz von Boberfeld C, Esslinger C, Kirsch P, Grimm O, Arnold C, Haddad L, Witt SH, Cichon S, Nöthen MM, Rietschel M, Walter H (2010) Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatry 67:803–811

    PubMed  Google Scholar 

  • Ferreira MAR, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, Kirov G, Perlis RH, Green EK, Smoller JW, Grozeva D, Stone J, Nikolov I, Chambert K et al (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flavell SW, Greenberg ME (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 31:563–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gauthier J, Champagne N, Lafrenière RG, Xiong L, Spiegelman D, Edna Brustein E et al (2010) De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci U S A 107:7863–7868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gee NS, Ragan CI, Watling KJ, Aspley S, Jackson RG, Reid GG, Cl G, Shute JK (1988) The purification and properties of myoinositol monophosphatase from bovine brain. Biochem J 249:883–889

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giegling I, Genius J, Benninghoff J, Rujescu D (2010) Genetic findings in schizophrenia patients related to alterations in the intracellular Ca-homeostasis. Prog Neuropsychopharm Biol Psychiatr 34:1375–1380

    CAS  Google Scholar 

  • Gonzalez-Burgos G, Lewis DA (2008) GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 34:944–961

    PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Burgos G, Lewis DA (2012) NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull 38:950–957

    PubMed Central  PubMed  Google Scholar 

  • Greenwood TA, Schork NJ, Eskin E, Kelsoe JR (2006) Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Mol Psychiatry 11:125–133

    CAS  PubMed  Google Scholar 

  • Guella I, Sequeira A, Rollins B, Morgan L, Torri F, van Erp TG, Myers RM, Barchas JD, Schatzberg AF, Watson SJ, Akil H, Bunney WE, Potkin SG, Macciardi F, Vawter MP (2013) Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex. J Psychiatr Res 47:1215–1221

    PubMed  Google Scholar 

  • Guilmatre A, Huguet G, Delorme R, Bourgeron T (2014) The emerging role of SHANK genes in neuropsychiatric disorders. Dev Neurobiol 74:113–122

    CAS  PubMed  Google Scholar 

  • Hardingham GE, Bading H (1999) Calcium as a versatile second messenger in the control of gene expression. Microsc Res Tech 46:348–355

    CAS  PubMed  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harvey AG (2008) Sleep and circadian rhythms in bipolar disorder: seeking synchrony, harmony, and regulation. Am J Psychiatry 165:820–829

    PubMed  Google Scholar 

  • Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindström LH, Iyo M (2005) Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Prog Neuropsychopharm Biol Psychiatr 29:767–769

    CAS  Google Scholar 

  • Hsin H, Kim MJ, Wang CF, Sheng M (2010) Proline-rich tyrosine kinase 2 regulates hippocampal long-term depression. J Neurosci 30:11983–11993

    CAS  PubMed  Google Scholar 

  • Hur E-M, Zhou F-Q (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11:539–551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jagannath A, Peirson SN, Foster RG (2013) Sleep and circadian rhythm disruption in neuropsychiatric illness. Curr Opin Neurobiol 23:888–894

    CAS  PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    CAS  PubMed  Google Scholar 

  • Kantrowitz JT, Javitt DC (2010) N-methyl-D-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 83:108–121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HJ, Thayer SA (2009) Lithium increases synapse formation between hippocampal neurons by depleting phosphoinositides. Mol Pharmacol 75:1021–1030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kofman O, Belmaker RH (1990) Intracerebroventricularmyo-inositol antagonizes lithium-induced suppression of rearing behaviour in rats. Brain Res 534:345–347

    CAS  PubMed  Google Scholar 

  • Koh PO, Undie AS, Kabbani N, Levenson R, Goldman-Rakic PS, Lidow MS (2003) Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc Natl Acad Sci U S A 100:313–317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krug A, Krach S, Jansen A, Nieratschker V, Witt SH, Shah NJ, Nöthen MM, Rietschel M, Kircher T (2013) The effect of neurogranin on neural correlates of episodic memory encoding and retrieval. Schizophr Bull 39:141–150

    PubMed Central  PubMed  Google Scholar 

  • Labrie V, Roder JC (2010) The involvement of the NMDA receptor D-serine/glycine site in the pathophysiology and treatment of schizophrenia. Neurosci Biobehav Rev 34:351–372

    CAS  PubMed  Google Scholar 

  • Lacinova L, Moosmang S, Langwieser N, Hofmann F, Kleppisch T (2008) Cav1.2 calcium channels modulate the spiking pattern of hippocampal pyramidal cells. Life Sci 82:41–49

    CAS  PubMed  Google Scholar 

  • Lee K-H, Williams LM, Breakspear M, Gordon E (2003) Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Rev 41:57–78

    PubMed  Google Scholar 

  • Lewis DA, Sweet RA (2009) Schizophrenia from a neural circuitry perspective: advancing toward rational pharmacological therapies. J Clin Invest 110:706–709

    Google Scholar 

  • Li X, Jope RS (2010) Is glycogen synthase kinase-3 a central modulator of mood regulation? Neuropsychopharmacology 35:2143–2154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lidow MS (2003) Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res Brain Res Rev 43:70–84

    CAS  PubMed  Google Scholar 

  • Lisman J (2012) Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Curr Opin Neurobiol 22:537–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA (2008) Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 31:234–242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Forouda T, Xueia X, Berrettinib W, Byerleyc W, Coryelld W et al (2008) Evidence of association between brain-derived neurotrophic factor (BDNF) gene and bipolar disorder. Psychiatr Genet 18:267–274

    PubMed Central  PubMed  Google Scholar 

  • Lovestone S, Killick R, Di Forti M, Murray R (2007) Schizophrenia as a GSK-3 dysregulation disorder. Trends Neurosci 30:142–149

    CAS  PubMed  Google Scholar 

  • Machado-Vieira R, Manji HK, Zarate AC (2009) The role of lithium in the treatement of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord 11:92–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Machado-Vieira R, Pivovarova NB, Stanika RI, Yun Wang PY, Zhou R, Zarate CA et al (2010) The Bcl-2 gene polymorphism rs956572AA increases inositol 1,4,5-trisphosphate receptor–mediated endoplasmic reticulum calcium release in subjects with bipolar disorder. Biol Psychiatry 69:344–352

    PubMed Central  PubMed  Google Scholar 

  • Mahli GS, Tenious M, Das P, Coulston CM, Berk M (2013) Potential mechanisms of action of lithium in bipolar disorder. CNS Drugs 27:135–153

    Google Scholar 

  • Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK et al (2009) Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-catenin signalling. Cell 136:1017–1031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinowich K, Schloesser RJ, Manji HK (2009) Bipolar disorder: from genes to behaviour pathways. J Clin Invest 119:726–736

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matosin N, Newell KA (2013) Metabotropic glutamate receptor 5 in the pathology and treatment of schizophrenia. Neurosci Biobehav Rev 37:256–268

    CAS  PubMed  Google Scholar 

  • McClung CA (2013) How might circadian rhythms control mood? Let me count the ways. Biol Psychiatry 74:242–249

    PubMed  Google Scholar 

  • Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M (2011) Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12:524–538

    CAS  PubMed  Google Scholar 

  • Missiaen L, Taylor CW, Berridge MJ (1991) Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature 352:241–244

    CAS  PubMed  Google Scholar 

  • Moosmang S, Haider N, Klugbauer N, Adelsberger H, Langwieser N, Müller J, Stiess M, Marais E, Schulla V, Lacinova L, Goebbels S, Nave KA, Storm DR, Hofmann F, Kleppisch T (2005) Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J Neurosci 25:9883–9892

    CAS  PubMed  Google Scholar 

  • Morita Y, Ujike H, Tanaka Y, Otani K, Kishimoto M, Morio A, Kotaka T, Okahisa Y, Matsushita M, Morikawa A, Hamase K, Zaitsu K, Kuroda S (2007) A genetic variant of the serine racemase gene is associated with schizophrenia. Biol Psychiatry 61:1200–1203

    CAS  PubMed  Google Scholar 

  • Najjr S, Pearlman DM, Alper K, Najjar A, Devinsky O (2013) Neuroinflammation and psychiatric illness. J Neuroinflammation 10:43–67

    Google Scholar 

  • Nakazawa K, Zsirosa V, Jiang Z, Nakao K, Kolata S, Zhang S, Belforte JE (2012) GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 62:1574–1583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohi K, Hashimoto R, Yasuda Y, Nemoto K, Ohnishi T, Fukumoto M, Yamamori H, Umeda-Yano S, Okada T, Iwase M, Kazui H, Takeda M (2012) Impact of the genome wide supported NRGN gene on anterior cingulate morphology in schizophrenia. PLoS ONE 7:e29780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605

    CAS  PubMed  Google Scholar 

  • Pitcher GM, Kalia LV, Ng D, Goodfellow NM, Yee KT, Lambe EK, Salter MW (2011) Schizophrenia susceptibility pathway neuregulin 1–ErbB4 suppresses Src upregulation of NMDA receptors. Nat Med 17:470–478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu Z, Ghosh A (2008) A calcium-dependent switch in a CREST-BRG1 complex regulates activity-dependent gene expression. Neuron 60:775–787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quiroz JA, Machado-Vieira R, Zarate CA, Manji HK (2010) Novel insights into lithium’s mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology 62:50–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ritter PS, Kretschmer K, Pfennig A, Soltmann B (2013) Disturbed sleep in bipolar disorder is related to an elevation of IL-6 in peripheral monocytes. Med Hypotheses 81:1031–1033

    CAS  PubMed  Google Scholar 

  • Rong YP, Distelhorst CW (2008) Bcl-2 protein family: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 70:73–91

    CAS  PubMed  Google Scholar 

  • Ross CA, Margolis RL, Reading SAJ, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52:139–153

    CAS  PubMed  Google Scholar 

  • Rowe MK, Wiest C, De-Maw Chuang D-W (2007) GSK-3 is a viable potential target for therapeutic intervention in bipolar disorder. Neurosci Biobehav Rev 31:920–931

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181

    CAS  PubMed  Google Scholar 

  • Salvadore G, Quiroz JA, Machado-Vieira R, Henter ID, Manji HK, Zarate CA Jr (2010) The neurobiology of the switch process in bipolar disorder: a review. J Clin Psychiatry 71:1488–1501

    PubMed Central  PubMed  Google Scholar 

  • Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263

    CAS  PubMed  Google Scholar 

  • Sayas CL, Atiaens A, Ponsioen B, Moolenaar WH (2006) GSK-3 is activated by the tyrosine kinase Pyk2 during LPA1-mediated neurite retraction. Mol Biol Cell 17:1834–1844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scarr E, Dean B (2008) Muscarinic receptors: do they have a role in the pathology and treatment of schizophrenia. J Neurochem 107:1188–1195

    CAS  PubMed  Google Scholar 

  • Schlecker C, Boehmerle W, Jeromin A, DeGray B, Varshney A, Sharma Y et al (2006) Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium. J Clin Invest 116:1668–1674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz JRL, Roth T (2008) Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharm 6:367–378

    CAS  Google Scholar 

  • Shaltiel G, Shamir A, Shapiro J, Ding D, Dalton E, Bialer M, Harwood AJ, Belmaker RH, Greenberg ML, Agam G (2004) Valproate decreases inositol biosynthesis. Biol Psychiatry 56:868–874

    CAS  PubMed  Google Scholar 

  • Sharma G, Vijayaraghavan S (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38:929–939

    CAS  PubMed  Google Scholar 

  • Shinkai T, De Luca V, Hwang R, Muller DJ, Lanktree M, Zai G, Shaikh S, Wong G, Sicard T, Potapova N, Trakalo J, King N, Matsumoto C, Hori H, Wong AHC, Ohmori O, Macciardi F, Nakamura J, Kennedy JL (2007) Association analyses of the DAOA/G30 and D amino-acid oxidase genes in schizophrenia: further evidence for a role in schizophrenia. Neuromol Med 9:169–177

    CAS  Google Scholar 

  • Singh N, Halliday AC, Thomas JM, Kuznetsova OV, Baldwin R, Woon EC, Aley PK, Antoniadou I, Sharp T, Vasudevan SR, Churchill GC (2013) A safe lithium mimetic for bipolar disorder. Nat Commun 4:1332

    PubMed Central  PubMed  Google Scholar 

  • Sklar P, Smoller JW, Fan J, Ferreira MAR, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A, de Bakker PIW, Ogdie MN, Thase ME, Sachs GS, Todd-Brown K, Gabriel SB, Sougnez C, Gates C, Blumenstiel B, Defelice M, Ardlie KG, Franklin J, Muir WJ, McGhee KA, MacIntyre DJ, McLean A, VanBeck M, McQuillin A, Bass NJ, Robinson M, Lawrence J, Anjorin A, Curtis D, Scolnick EM, Daly MJ, Blackwood DH, Gurling HM, Purcell SM (2008) Whole-genome association study of bipolar disorder. Mol Psychiatry 13:558–569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Snyder MA, Gao W-J (2013) NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci 7:1–12

    Google Scholar 

  • Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31

    CAS  PubMed  Google Scholar 

  • Suh B-C, Hille B (2002) Recovery of muscarinic modulation of M channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35:507–520

    CAS  PubMed  Google Scholar 

  • Suh B-C, Leal K, Hille B (2013) Modulation of high-voltage activated Ca2+ channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron 67:224–238

    Google Scholar 

  • Thrower EC, Duclohier H, Lea EJA, Molle G, Dawson AP (1996) The inositol 1,4,5-trisphosphate-gated Ca22+ channel: effect of the protein thiol reagent thimerosal on channel activity. Biochem J 318:61–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Touriño C, Eban-Rothschild A, de Lecea L (2013) Optogenetics in psychiatric diseases. Curr Opin Neurobiol 23:430–435

    PubMed Central  PubMed  Google Scholar 

  • Uhlaas PJ (2013) Dysconnectivity, large-scale networks and neuronal dynamics in schizophrenia. Curr Opin Neurobiol 23:283–290

    Google Scholar 

  • Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–113

    CAS  PubMed  Google Scholar 

  • Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57:1139–1147

    CAS  PubMed  Google Scholar 

  • Vacic V, McCarthy S, Malhotra D, Murray F, Chou H-H, Peoples A et al (2011) Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 471:499–503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warsh JJ, Andreopoulos S, Li PP (2004) Role of intracellular calcium signaling in the pathophysiology and pharmacotherapy of bipolar disorder: current status. Clin Neurosci Res 4:201–213

    CAS  Google Scholar 

  • Wright C, Turner JA, Calhoun VD, Perrone-Bizzozero N (2013) Potential impact of miR-137 and its targets in schizophrenia. Front Genet 4:58

    PubMed Central  PubMed  Google Scholar 

  • Wu GY, Deisseroth K, Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 98:2808–2813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zarate CA, Manji HK (2009) Protein kinase C inhibitors: rationale for use and potential in the treatment of bipolar disorder. CNS Drugs 23:569–582

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Berridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berridge, M.J. Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res 357, 477–492 (2014). https://doi.org/10.1007/s00441-014-1806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1806-z

Keywords

Navigation