Skip to main content
Log in

Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

WRKY proteins constitute one of the largest transcription factor families in higher plants, and they are involved in multiple biological processes such as plant development, metabolism, and responses to biotic and abiotic stresses. Genes of this family have been well documented in response to many abiotic and biotic stresses in many plant species, but not yet against Pectobacterium carotovorum subsp. carotovorum and Fusarium oxysporum f.sp. conglutinans in any of the plants. Moreover, potentiality of a specific gene may vary depending on stress conditions and genotypes. To identify stress resistance-related potential WRKY genes of Brassica rapa, we analyzed their expressions against above-mentioned pathogens and cold, salt, and drought stresses in B. rapa. Stress resistance-related functions of all Brassica rapa WRKY (BrWRKY) genes were firstly analyzed through homology study with existing biotic and abiotic stress resistance-related WRKY genes of other plant species and found a high degree of homology. We then identified all BrWRKY genes in a Br135K microarray dataset, which was created by applying low-temperature stresses to two contrasting Chinese cabbage doubled haploid (DH) lines, Chiifu and Kenshin, and selected 41 BrWRKY genes with high and differential transcript abundance levels. These selected genes were further investigated under cold, salt, and drought stresses as well as after infection with P. carotovorum subsp. carotovorum and F. oxysporum f.sp. conglutinans in B. rapa. The selected genes showed an organ-specific expression, and 22 BrWRKY genes were differentially expressed in Chiifu compared to Kenshin under cold and drought stresses. Six BrWRKY genes were more responsive in Kenshin compared to Chiffu under salt stress. In addition, eight BrWRKY genes showed differential expression after P. carotovorum subsp. carotovorum infection and five genes after F. oxysporum f.sp. conglutinans infection in B. rapa. Thus, the differentially expressed BrWRKY genes might be potential resources for molecular breeding of Brassica crops against abiotic and biotic stresses and several genes, which showed differential expressions commonly in response to several stresses, might be useful for multiple stress resistance. These findings would also be helpful in resolving the complex regulatory mechanism of WRKY genes in stress resistance and for this further functional genomics study of these potential genes in different Brassica crops is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed NU, Park JI, Jung HJ, Kang KK, Lim YP, Hur Y, Nou IS (2013) Molecular characterization of thaumatin family genes related to stresses in Brassica rapa. Sci Hortic 152:26–34

    Article  CAS  Google Scholar 

  • Beyer K, Binder A, Boller T, Colling M (2001) Identification of potato genes induced during colonization by Phytophthora infestans. Mol Plant Pathol 2:125–134

    Article  CAS  PubMed  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhang L, Yu D (2010) Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol Plant-Microbe Interact 23:558–565

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68:81–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collinge DB, Slusarenko AJ (1987) Plant gene expression in response to pathogens. Plant Mol Biol 9:389–410

    Article  CAS  PubMed  Google Scholar 

  • Cormack RS, Eulgem T, Rushton PJ, Kochner P, Hahlbrock K, Somssich IE (2002) Leucine zipper containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley. Biochem Biophys Acta 1576:92–100

    CAS  PubMed  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profile of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  CAS  PubMed  Google Scholar 

  • Du L, Chen Z (2002) Identification of genes encoding receptor like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant J 24:837–847

    Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • He H, Dong Q, Shao Y, Jiang H, Zhu S, Cheng B, Xiang Y (2012) Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell Rep 31:1199–1217

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Duman JG (2002) Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Mol Biol 48:339–350

    Article  CAS  PubMed  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 50 upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet 244:563–571

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    Article  CAS  PubMed  Google Scholar 

  • Johnson SC, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karam BS, Rhonda CF, Luis OS (2002) Transcription factors in plant defense and stress response. Curr Opin Plant Biol 5:430–436

    Article  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  CAS  PubMed  Google Scholar 

  • Lagace M, Matton DP (2004) Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta 219:185–189

    Article  CAS  PubMed  Google Scholar 

  • Lai Z (2008) Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol 8:68

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee J, Lim YP, Han CT, Nou IS, Hur Y (2013) Genome-wide expression profiles of contrasting inbred lines of Chinese cabbage, Chiifu and Kenshin, under temperature stress. Genes Genom 35:273–288

    Article  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232 (database issue)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li HL, Zhang LB, Guo D, Li CZ, Peng SQ (2012) Identification and expression profiles of the WRKY transcription factor family in Ricinus communis. Gene 503:248–253

    Article  CAS  PubMed  Google Scholar 

  • Ling J, Jiang W, Zhang Y, Yu H, Mao Z, Gu X, Huang S, Xie B (2011) Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genom 12:471

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM, Cattivelli L (2004) Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol 55:399–416

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu JK, Gong Z (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63:417–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Şahin-Çevik M (2012) A WRKY transcription factor gene isolated from Poncirus trifoliata shows differential responses to cold and drought stresses. Plant Omics J 5:438–445

    Google Scholar 

  • Salunkhe DK, Kadam SS (1998) Handbook of vegetable science technology: production, composition, storage, and processing. Marcel Dekker Inc., New York

    Google Scholar 

  • Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar responsive elements of the iso1 promoter. Plant Cell 15:2076–2092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang J, Wang F, Hou X, Wang Z, Huang Z (2014) Genome-wide fractionation and identification of WRKY transcription factors in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals collinearity and their expression patterns under abiotic and biotic stresses. Plant Mol Biol Rep 32:781–795

    Article  CAS  Google Scholar 

  • Tripathi P, Rabara RC, Langum TJ, Boken AK, Rushton DL, Boomsma DD, Rinerson CI, Rabara J, Reese RN, Chen X, Rohila JS, Rushton PJ (2012) The WRKY transcription factor family in Brachypodium distachyon. BMC Genom 13:270

    Article  CAS  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Hou X, Tang J, Wang Z, Wang S, Jiang F, Li Y (2012) A novel cold inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Mol Biol Rep 39:4553–4564

    Article  CAS  PubMed  Google Scholar 

  • Wei K, Chen J, Chen Y, Wu L, Xie D (2012) Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in Maize. DNA Res 19:153–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu KL, Guo ZJ, Wang HH, Li J (2005) The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 12:9–26

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zhang ZL, Zou X, Yang G, Komatsu S, Shen QJ (2006) Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J 46:231–242

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Xu X, Zhang L, Wu P, Chen Y, Li M, Jiang H, Wu G (2013) Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.). Gene 524:124–132

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang ZL, Xie Z, Zou X, Casaretto J, David TH, Zhen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7:2

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Golden Seed Project (Center for Horticultural Seed Development, No. 213003-04-2-CG100), Ministry of Agriculture, Food and Rural Affairs (MAFRA), Ministry of Oceans and Fisheries (MOF), Rural Development Administration (RDA) and Korea Forest Service (KFS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ill-Sup Nou.

Additional information

Communicated by R. K. Varshney.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayum, M.A., Jung, HJ., Park, JI. et al. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa . Mol Genet Genomics 290, 79–95 (2015). https://doi.org/10.1007/s00438-014-0898-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0898-1

Keywords

Navigation