Skip to main content
Log in

Attention to memory: orienting attention to sound object representations

  • Review
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Despite a growing acceptance that attention and memory interact, and that attention can be focused on an active internal mental representation (i.e., reflective attention), there has been a paucity of work focusing on reflective attention to ‘sound objects’ (i.e., mental representations of actual sound sources in the environment). Further research on the dynamic interactions between auditory attention and memory, as well as its degree of neuroplasticity, is important for understanding how sound objects are represented, maintained, and accessed in the brain. This knowledge can then guide the development of training programs to help individuals with attention and memory problems. This review article focuses on attention to memory with an emphasis on behavioral and neuroimaging studies that have begun to explore the mechanisms that mediate reflective attentional orienting in vision and more recently, in audition. Reflective attention refers to situations in which attention is oriented toward internal representations rather than focused on external stimuli. We propose four general principles underlying attention to short-term memory. Furthermore, we suggest that mechanisms involved in orienting attention to visual object representations may also apply for orienting attention to sound object representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Recall that we are using the term “perceptual” to refer to attention to ongoing, external stimuli (per Chun & Johnson, 2011).

References

  • Abramovitch, A., Dar, R., Hermesh, H., & Schweiger, A. (2012). Comparative neuropsychology of adult obsessive-compulsive disorder and attention deficit/hyperactivity disorder: implications for a novel executive overload model of OCD. Journal of Neuropsychology, 6(2), 161–191. doi:10.1111/j.1748-6653.2011.02021.x.

    PubMed  Google Scholar 

  • Alain, C., Achim, A., & Richer, F. (1993). Perceptual context and the selective attention effect on auditory event-related brain potentials. Psychophysiology, 30(6), 572–580.

    PubMed  Google Scholar 

  • Alain, C., & Arnott, S. R. (2000). Selectively attending to auditory objects. Frontiers in Bioscience, 5, D202–D212.

    PubMed  Google Scholar 

  • Alain, C., Arnott, S. R., Hevenor, S., Graham, S., & Grady, C. L. (2001). “What” and “where” in the human auditory system. Proceedings of the National Academy of Sciences of the United States of America, 98(21), 12301–12306. doi:10.1073/pnas.211209098211209098.

    PubMed Central  PubMed  Google Scholar 

  • Alain, C., & Bernstein, L. J. (2008). From sounds to meaning: the role of attention during auditory scene analysis. Current Opinion in Otolaryngology & Head and Neck Surgery, 16, 485–489.

    Google Scholar 

  • Alain, C., He, Y., & Grady, C. (2008). The contribution of the inferior parietal lobe to auditory spatial working memory. Journal of Cognitive Neuroscience, 20(2), 285–295. doi:10.1162/jocn.2008.20014.

    PubMed  Google Scholar 

  • Alain, C., & Izenberg, A. (2003). Effects of attentional load on auditory scene analysis. Journal of Cognitive Neuroscience, 15(7), 1063–1073. doi:10.1162/089892903770007443.

    PubMed  Google Scholar 

  • Alain, C., & Ross, B. (2008). The role of neuroelectric and neuromagnetic recordings in assessing learning and rehabilitation effects. In D. T. Stuss & G. Winocur (Eds.), Cognitive Neurorehabilitation, Evidence and Applications (2nd ed., pp. 183–199). New York: Cambridge University Press.

    Google Scholar 

  • Alain, C., & Woods, D. L. (1993). Distractor clustering enhances detection speed and accuracy during selective listening. Perception & Psychophysics, 54(4), 509–514.

    Google Scholar 

  • Alain, C., & Woods, D. L. (1994). Signal clustering modulates auditory cortical activity in humans. Perception & Psychophysics, 56(5), 501–516.

    Google Scholar 

  • Alho, K., Donauer, N., Paavilainen, P., Reinikainen, K., Sams, M., & Naatanen, R. (1987a). Stimulus selection during auditory spatial attention as expressed by event-related potentials. Biological Psychology, 24(2), 153–162.

    PubMed  Google Scholar 

  • Alho, K., Tottola, K., Reinikainen, K., Sams, M., & Naatanen, R. (1987b). Brain mechanism of selective listening reflected by event-related potentials. Electroencephalography and Clinical Neurophysiology, 68(6), 458–470.

    PubMed  Google Scholar 

  • Amir, N., Cashman, L., & Foa, E. B. (1997). Strategies of thought control in obsessive-compulsive disorder. Behaviour Research and Therapy, 35(8), 775–777.

    PubMed  Google Scholar 

  • Armstrong, T., Sarawgi, S., & Olatunji, B. O. (2012). Attentional bias toward threat in contamination fear: overt components and behavioral correlates. Journal of Abnormal Psychology, 121(1), 232–237. doi:10.1037/a0024453.

    PubMed Central  PubMed  Google Scholar 

  • Arnott, S. R., & Alain, C. (2002). Effects of perceptual context on event-related brain potentials during auditory spatial attention. Psychophysiology, 39(5), 625–632.

    PubMed  Google Scholar 

  • Arnott, S. R., & Alain, C. (2011). The auditory dorsal pathway: orienting vision. Neuroscience and Biobehavioral Reviews,. doi:10.1016/j.neubiorev.2011.04.005.

    PubMed  Google Scholar 

  • Arnsten, A. F., & Rubia, K. (2012). Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 51(4), 356–367. doi:10.1016/j.jaac.2012.01.008.

    PubMed  Google Scholar 

  • Astle, D. E., Summerfield, J., Griffin, I., & Nobre, A. C. (2012). Orienting attention to locations in mental representations. Attention, Perception, & Psychophysics, 74(1), 146–162. doi:10.3758/s13414-011-0218-3.

    Google Scholar 

  • Axmacher, N., Mormann, F., Fernandez, G., Cohen, M. X., Elger, C. E., & Fell, J. (2007). Sustained neural activity patterns during working memory in the human medial temporal lobe. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(29), 7807–7816. doi:10.1523/JNEUROSCI.0962-07.2007.

    Google Scholar 

  • Backer, K. C., & Alain, C. (2012). Orienting attention to sound object representations attenuates change deafness. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1554–1566. doi:10.1037/a0027858.

    PubMed  Google Scholar 

  • Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559.

    PubMed  Google Scholar 

  • Banerjee, S., Snyder, A. C., Molholm, S., & Foxe, J. J. (2011). Oscillatory alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: supramodal or sensory-specific control mechanisms? The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(27), 9923–9932. doi:10.1523/JNEUROSCI.4660-10.2011.

    Google Scholar 

  • Bastiaansen, M., Magyari, L., & Hagoort, P. (2010). Syntactic unification operations are reflected in oscillatory dynamics during on-line sentence comprehension. Journal of Cognitive Neuroscience, 22(7), 1333–1347. doi:10.1162/jocn.2009.21283.

    PubMed  Google Scholar 

  • Bastiaansen, M. C., Oostenveld, R., Jensen, O., & Hagoort, P. (2008). I see what you mean: theta power increases are involved in the retrieval of lexical semantic information. Brain and Language, 106(1), 15–28. doi:10.1016/j.bandl.2007.10.006.

    PubMed  Google Scholar 

  • Bastiaansen, M. C., van der Linden, M., Ter Keurs, M., Dijkstra, T., & Hagoort, P. (2005). Theta responses are involved in lexical-semantic retrieval during language processing. Journal of Cognitive Neuroscience, 17(3), 530–541. doi:10.1162/0898929053279469.

    PubMed  Google Scholar 

  • Baylis, G. C., & Driver, J. (1993). Visual attention and objects: evidence for hierarchical coding of location. Journal of Experimental Psychology: Human Perception and Performance, 19(3), 451–470.

    PubMed  Google Scholar 

  • Bertrand, O., & Tallon-Baudry, C. (2000). Oscillatory gamma activity in humans: a possible role for object representation. International Journal of Psychophysiology, 38(3), 211–223.

    PubMed  Google Scholar 

  • Best, V., Gallun, F. J., Ihlefeld, A., & Shinn-Cunningham, B. G. (2006). The influence of spatial separation on divided listening. Journal of the Acoustical Society of America, 120(3), 1506–1516.

    PubMed  Google Scholar 

  • Brefczynski, J. A., & DeYoe, E. A. (1999). A physiological correlate of the ‘spotlight’ of visual attention. Nature Neuroscience, 2(4), 370–374.

    PubMed  Google Scholar 

  • Buchsbaum, B. R., Olsen, R. K., Koch, P., & Berman, K. F. (2005). Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory. Neuron, 48(4), 687–697. doi:10.1016/j.neuron.2005.09.029.

    Google Scholar 

  • Burianova, H., Ciaramelli, E., Grady, C. L., & Moscovitch, M. (2012). Top-down and bottom-up attention-to-memory: mapping functional connectivity in two distinct networks that underlie cued and uncued recognition memory. Neuroimage, 63(3), 1343–1352. doi:10.1016/j.neuroimage.2012.07.057S1053-8119(12)00787-2.

    PubMed  Google Scholar 

  • Cabeza, R., Mazuz, Y. S., Stokes, J., Kragel, J. E., Woldorff, M. G., Ciaramelli, E., et al. (2011). Overlapping parietal activity in memory and perception: evidence for the attention to memory model. Journal of Cognitive Neuroscience, 23(11), 3209–3217. doi:10.1162/jocn_a_00065.

    PubMed Central  PubMed  Google Scholar 

  • Cashdollar, N., Malecki, U., Rugg-Gunn, F. J., Duncan, J. S., Lavie, N., & Duzel, E. (2009). Hippocampus-dependent and -independent theta-networks of active maintenance. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20493–20498. doi:10.1073/pnas.0904823106.

    PubMed Central  PubMed  Google Scholar 

  • Chen, Z., & Cave, K. R. (2008). Object-based attention with endogenous cuing and positional certainty. Perception & Psychophysics, 70(8), 1435–1443.

    Google Scholar 

  • Cherry, E. C. (1953). Some experiments on the recognition of speech with one and with two ears. Journal of Acoustical Society of America, 25, 975–979.

    Google Scholar 

  • Chun, M. M., & Johnson, M. K. (2011). Memory: enduring traces of perceptual and reflective attention. Neuron, 72(4), 520–535. doi:10.1016/j.neuron.2011.10.026.

    Google Scholar 

  • Ciaramelli, E., Grady, C., Levine, B., Ween, J., & Moscovitch, M. (2010). Top-down and bottom-up attention to memory are dissociated in posterior parietal cortex: neuroimaging and neuropsychological evidence. Journal of Neuroscience, 30(14), 4943–4956. doi:10.1523/JNEUROSCI.1209-09.201030/14/4943.

    PubMed  Google Scholar 

  • Ciaramelli, E., Grady, C. L., & Moscovitch, M. (2008). Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia, 46(7), 1828–1851. doi:10.1016/j.neuropsychologia.2008.03.022.

    PubMed  Google Scholar 

  • Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3(3), 292–297. doi:10.1038/73009.

    PubMed  Google Scholar 

  • Corbetta, M., Kincade, J. M., & Shulman, G. L. (2002). Neural systems for visual orienting and their relationships to spatial working memory. Journal of Cognitive Neuroscience, 14(3), 508–523. doi:10.1162/089892902317362029.

    PubMed  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. doi:10.1038/nrn755.

    PubMed  Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. The Behavioral and Brain Sciences, 24(1), 87–114; discussion 114–185.

  • Cristescu, T. C., Devlin, J. T., & Nobre, A. C. (2006). Orienting attention to semantic categories. Neuroimage, 33(4), 1178–1187. doi:10.1016/j.neuroimage.2006.08.017.

    PubMed Central  PubMed  Google Scholar 

  • Cusack, R., Carlyon, R. P., & Robertson, I. H. (2000). Neglect between but not within auditory objects. Journal of Cognitive Neuroscience, 12(6), 1056–1065.

    PubMed  Google Scholar 

  • Duncan, J. (1980). The locus of interference in the perception of simultaneous stimuli. Psychological Review, 87(3), 272–300.

    PubMed  Google Scholar 

  • Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113(4), 501–517.

    Google Scholar 

  • Dyson, B. J., Alain, C., & He, Y. (2005). Effects of visual attentional load on low-level auditory scene analysis. Cognitive Affective Behaviorial Neuroscience, 5(3), 319–338.

    Google Scholar 

  • Dyson, B. J., & Ishfaq, F. (2008). Auditory memory can be object based. Psychonomic Bulletin & Review, 15(2), 409–412.

    Google Scholar 

  • Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123(2), 161–177.

    Google Scholar 

  • Eramudugolla, R., Irvine, D. R., McAnally, K. I., Martin, R. L., & Mattingley, J. B. (2005). Directed attention eliminates ‘change deafness’ in complex auditory scenes. Current Biology, 15(12), 1108–1113.

    PubMed  Google Scholar 

  • Fan, J., Byrne, J., Worden, M. S., Guise, K. G., McCandliss, B. D., Fossella, J., et al. (2007). The relation of brain oscillations to attentional networks. Journal of Neuroscience, 27(23), 6197–6206. doi:10.1523/JNEUROSCI.1833-07.2007.

    PubMed  Google Scholar 

  • Foxe, J. J., & Snyder, A. C. (2011). The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention. Frontiers in psychology, 2, 154. doi:10.3389/fpsyg.2011.00154.

    PubMed Central  PubMed  Google Scholar 

  • Gamble, M. L., & Luck, S. J. (2011). N2ac: an ERP component associated with the focusing of attention within an auditory scene. Psychophysiology,. doi:10.1111/j.1469-8986.2010.01172.x.

    PubMed Central  PubMed  Google Scholar 

  • Giesbrecht, B., Woldorff, M. G., Song, A. W., & Mangun, G. R. (2003). Neural mechanisms of top-down control during spatial and feature attention. Neuroimage, 19(3), 496–512.

    PubMed  Google Scholar 

  • Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15(8), 1176–1194. doi:10.1162/089892903322598139.

    PubMed  Google Scholar 

  • Grillon, M. L., Johnson, M. K., Krebs, M. O., & Huron, C. (2008). Comparing effects of perceptual and reflective repetition on subjective experience during later recognition memory. Consciousness and Cognition, 17(3), 753–764. doi:10.1016/j.concog.2007.09.004.

    PubMed  Google Scholar 

  • Hald, L. A., Bastiaansen, M. C., & Hagoort, P. (2006). EEG theta and gamma responses to semantic violations in online sentence processing. Brain and Language, 96(1), 90–105. doi:10.1016/j.bandl.2005.06.007.

    PubMed  Google Scholar 

  • Hamidi, M., Slagter, H. A., Tononi, G., & Postle, B. R. (2009). Repetitive Transcranial Magnetic Stimulation Affects behavior by Biasing Endogenous Cortical Oscillations. Frontiers in Integrative Neuroscience, 3, 14. doi:10.3389/neuro.07.014.2009.

    PubMed Central  PubMed  Google Scholar 

  • Han, X., Berg, A. C., Oh, H., Samaras, D., & Leung, H. C. (2013). Multi-voxel pattern analysis of selective representation of visual working memory in ventral temporal and occipital regions. Neuroimage, 73, 8–15. doi:10.1016/j.neuroimage.2013.01.055.

    PubMed  Google Scholar 

  • Hansen, J. C., & Hillyard, S. A. (1983). Selective attention to multidimensional auditory stimuli. Journal of Experimental Psychology: Human Perception and Performance, 9(1), 1–19.

    PubMed  Google Scholar 

  • Hecht, L. N., Abbs, B., & Vecera, S. P. (2008). Auditory object-based attention. Visual Cognition, 16, 1109–1115.

    Google Scholar 

  • Henseler, I., Kruger, S., Dechent, P., & Gruber, O. (2011). A gateway system in rostral PFC? Evidence from biasing attention to perceptual information and internal representations. Neuroimage, 56(3), 1666–1676. doi:10.1016/j.neuroimage.2011.02.056.

    PubMed  Google Scholar 

  • Hill, K. T., & Miller, L. M. (2010). Auditory attentional control and selection during cocktail party listening. Cerebral Cortex, 20(3), 583–590. doi:10.1093/cercor/bhp124.

    PubMed Central  PubMed  Google Scholar 

  • Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. Science, 182(108), 177–180.

    PubMed  Google Scholar 

  • Hopf, J. M., Luck, S. J., Girelli, M., Hagner, T., Mangun, G. R., Scheich, H., et al. (2000). Neural sources of focused attention in visual search. Cerebral Cortex, 10(12), 1233–1241.

    PubMed  Google Scholar 

  • Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284–291. doi:10.1038/72999.

    PubMed  Google Scholar 

  • Huang, Y., Xu, L., Wu, X., & Li, L. (2010). The effect of voice cuing on releasing speech from informational masking disappears in older adults. Ear and Hearing, 31(4), 579–583. doi:10.1097/AUD.0b013e3181db6dc2.

    PubMed  Google Scholar 

  • Hubner, R., & Hafter, E. R. (1995). Cuing mechanisms in auditory signal detection. Perception & Psychophysics, 57(2), 197–202.

    Google Scholar 

  • Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12(8), 877–882.

    PubMed  Google Scholar 

  • Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in Human Neuroscience, 4, 186. doi:10.3389/fnhum.2010.00186.

    PubMed Central  PubMed  Google Scholar 

  • Johnson, M. K., & Hirst, W. (1993). MEM: Memory subsystems as processes. In A. A. Collins, S. S. Gathercole, M. M. Conway, & P. E. Morris (Eds.), Theories of Memory. East Sussex: Erlbaum.

    Google Scholar 

  • Johnson, M. R., & Johnson, M. K. (2009). Top-down enhancement and suppression of activity in category-selective extrastriate cortex from an act of reflective attention. Journal of Cognitive Neuroscience, 21(12), 2320–2327. doi:10.1162/jocn.2008.21183.

    Google Scholar 

  • Johnson, M. R., Mitchell, K. J., Raye, C. L., D’Esposito, M., & Johnson, M. K. (2007). A brief thought can modulate activity in extrastriate visual areas: top-down effects of refreshing just-seen visual stimuli. Neuroimage, 37(1), 290–299. doi:10.1016/j.neuroimage.2007.05.017.

    PubMed Central  PubMed  Google Scholar 

  • Johnson, M. K., Raye, C. L., Mitchell, K. J., Greene, E. J., Cunningham, W. A., & Sanislow, C. A. (2005). Using fMRI to investigate a component process of reflection: prefrontal correlates of refreshing a just-activated representation. Cognitive, Affective & Behavioral Neuroscience, 5(3), 339–361.

    Google Scholar 

  • Jokisch, D., & Jensen, O. (2007). Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(12), 3244–3251. doi:10.1523/JNEUROSCI.5399-06.2007.

    Google Scholar 

  • Kaiser, J., & Bertrand, O. (2003). Dynamics of working memory for moving sounds: an event-related potential and scalp current density study. Neuroimage, 19(4), 1427–1438.

    PubMed  Google Scholar 

  • Kaiser, J., & Lutzenberger, W. (2003). Induced gamma-band activity and human brain function. Neuroscientist, 9(6), 475–484. doi:10.1177/1073858403259137.

    PubMed  Google Scholar 

  • Kaiser, J., Lutzenberger, W., Decker, C., Wibral, M., & Rahm, B. (2009a). Task- and performance-related modulation of domain-specific auditory short-term memory representations in the gamma-band. Neuroimage, 46(4), 1127–1136. doi:10.1016/j.neuroimage.2009.03.011.

    PubMed  Google Scholar 

  • Kaiser, J., Rahm, B., & Lutzenberger, W. (2009b). Temporal dynamics of stimulus-specific gamma-band activity components during auditory short-term memory. Neuroimage, 44(1), 257–264. doi:10.1016/j.neuroimage.2008.08.018.

    PubMed  Google Scholar 

  • Kaiser, J., Ripper, B., Birbaumer, N., & Lutzenberger, W. (2003). Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory. Neuroimage, 20(2), 816–827. doi:10.1016/S1053-8119(03)00350-1.

    PubMed  Google Scholar 

  • Kerlin, J. R., Shahin, A. J., & Miller, L. M. (2010). Attentional gain control of ongoing cortical speech representations in a “cocktail party”. Journal of Neuroscience, 30(2), 620–628.

    PubMed Central  PubMed  Google Scholar 

  • Koster, E. H., De Raedt, R., Verschuere, B., Tibboel, H., & De Jong, P. J. (2009). Negative information enhances the attentional blink in dysphoria. Depress Anxiety, 26(1), E16–E22. doi:10.1002/da.20420.

    PubMed  Google Scholar 

  • Krumbholz, K., Eickhoff, S. B., & Fink, G. R. (2007). Feature- and object-based attentional modulation in the human auditory “where” pathway. Journal of Cognitive Neuroscience, 19(10), 1721–1733.

    PubMed  Google Scholar 

  • Kuo, B. C., Rao, A., Lepsien, J., & Nobre, A. C. (2009). Searching for targets within the spatial layout of visual short-term memory. Journal of Neuroscience, 29(25), 8032–8038. doi:10.1523/JNEUROSCI.0952-09.2009.

    PubMed  Google Scholar 

  • Kuo, B. C., Stokes, M. G., & Nobre, A. C. (2012). Attention modulates maintenance of representations in visual short-term memory. Journal of Cognitive Neuroscience, 24(1), 51–60. doi:10.1162/jocn_a_00087.

    PubMed Central  PubMed  Google Scholar 

  • LaBerge, D. (1983). Spatial extent of attention to letters and words. Journal of Experimental Psychology: Human Perception and Performance, 9(3), 371–379.

    PubMed  Google Scholar 

  • Landman, R., Spekreijse, H., & Lamme, V. A. (2003). Large capacity storage of integrated objects before change blindness. Vision Research, 43(2), 149–164. [pii]: S0042698902004029.

    PubMed  Google Scholar 

  • Lange, K. (2013). The ups and downs of temporal orienting: a review of auditory temporal orienting studies and a model associating the heterogeneous findings on the auditory N1 with opposite effects of attention and prediction. Frontiers in Human Neuroscience, 7, 263. doi:10.3389/fnhum.2013.00263.

    PubMed Central  PubMed  Google Scholar 

  • Leiberg, S., Kaiser, J., & Lutzenberger, W. (2006a). Gamma-band activity dissociates between matching and nonmatching stimulus pairs in an auditory delayed matching-to-sample task. Neuroimage, 30(4), 1357–1364. doi:10.1016/j.neuroimage.2005.11.010.

    PubMed  Google Scholar 

  • Leiberg, S., Lutzenberger, W., & Kaiser, J. (2006b). Effects of memory load on cortical oscillatory activity during auditory pattern working memory. Brain Research, 1120(1), 131–140. doi:10.1016/j.brainres.2006.08.066.

    PubMed  Google Scholar 

  • Lepsien, J., Griffin, I. C., Devlin, J. T., & Nobre, A. C. (2005). Directing spatial attention in mental representations: interactions between attentional orienting and working-memory load. Neuroimage, 26(3), 733–743. doi:10.1016/j.neuroimage.2005.02.026.

    PubMed  Google Scholar 

  • Lepsien, J., & Nobre, A. C. (2006). Cognitive control of attention in the human brain: insights from orienting attention to mental representations. Brain Research, 1105(1), 20–31. doi:10.1016/j.brainres.2006.03.033.

    PubMed  Google Scholar 

  • Lepsien, J., & Nobre, A. C. (2007). Attentional modulation of object representations in working memory. Cerebral Cortex, 17(9), 2072–2083. doi:10.1093/cercor/bhl116.

    PubMed  Google Scholar 

  • Lepsien, J., Thornton, I., & Nobre, A. C. (2011). Modulation of working-memory maintenance by directed attention. Neuropsychologia, 49(6), 1569–1577. doi:10.1016/j.neuropsychologia.2011.03.011.

    PubMed  Google Scholar 

  • Leung, A. W., & Alain, C. (2011). Working memory load modulates the auditory “What” and “Where” neural networks. Neuroimage, 55(3), 1260–1269. doi:10.1016/j.neuroimage.2010.12.055.

    PubMed  Google Scholar 

  • Lutzenberger, W., Ripper, B., Busse, L., Birbaumer, N., & Kaiser, J. (2002). Dynamics of gamma-band activity during an audiospatial working memory task in humans. Journal of Neuroscience, 22(13), 5630–5638. [pii]: 2002657022/13/5630.

    PubMed  Google Scholar 

  • Makovski, T., Sussman, R., & Jiang, Y. V. (2008). Orienting attention in visual working memory reduces interference from memory probes. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(2), 369–380. doi:10.1037/0278-7393.34.2.369.

    PubMed  Google Scholar 

  • Matsukura, M., Luck, S. J., & Vecera, S. P. (2007). Attention effects during visual short-term memory maintenance: protection or prioritization? Perception & Psychophysics, 69(8), 1422–1434.

    Google Scholar 

  • Mayer, A. R., Harrington, D., Adair, J. C., & Lee, R. (2006). The neural networks underlying endogenous auditory covert orienting and reorienting. Neuroimage, 30(3), 938–949. doi:10.1016/j.neuroimage.2005.10.050.

    PubMed  Google Scholar 

  • Mayer, A. R., Harrington, D. L., Stephen, J., Adair, J. C., & Lee, R. R. (2007). An event-related fMRI Study of exogenous facilitation and inhibition of return in the auditory modality. Journal of Cognitive Neuroscience, 19(3), 455–467. doi:10.1162/jocn.2007.19.3.455.

    PubMed  Google Scholar 

  • Mazaheri, A., DiQuattro, N. E., Bengson, J., & Geng, J. J. (2011). Pre-stimulus activity predicts the winner of top-down vs. bottom-up attentional selection. PLoS ONE, 6(2), e16243. doi:10.1371/journal.pone.0016243.

    PubMed Central  PubMed  Google Scholar 

  • McMains, S. A., & Somers, D. C. (2004). Multiple spotlights of attentional selection in human visual cortex. Neuron, 42(4), 677–686.

    PubMed  Google Scholar 

  • McNeely, H. E., Lau, M. A., Christensen, B. K., & Alain, C. (2008). Neurophysiological evidence of cognitive inhibition anomalies in persons with major depressive disorder. Clinical Neurophysiology, 119(7), 1578–1589.

    PubMed  Google Scholar 

  • Mondor, T. A., & Amirault, K. J. (1998). Effect of same- and different-modality spatial cues on auditory and visual target identification. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 745–755.

    PubMed  Google Scholar 

  • Muller, N., & Weisz, N. (2012). Lateralized auditory cortical alpha band activity and interregional connectivity pattern reflect anticipation of target sounds. Cerebral Cortex, 22(7), 1604–1613. doi:10.1093/cercor/bhr232.

    PubMed  Google Scholar 

  • Nee, D. E., & Jonides, J. (2009). Common and distinct neural correlates of perceptual and memorial selection. Neuroimage, 45(3), 963–975.

    PubMed Central  PubMed  Google Scholar 

  • Nobre, A. C., Coull, J. T., Maquet, P., Frith, C. D., Vandenberghe, R., & Mesulam, M. M. (2004). Orienting attention to locations in perceptual versus mental representations. Journal of Cognitive Neuroscience, 16(3), 363–373. doi:10.1162/089892904322926700.

    PubMed  Google Scholar 

  • Nobre, A. C., Griffin, I. C., & Rao, A. (2007). Spatial attention can bias search in visual short-term memory. Frontiers in Human Neuroscience, 1, 4. doi:10.3389/neuro.09.004.2007.

    PubMed Central  PubMed  Google Scholar 

  • Nobre, A. C., & Stokes, M. G. (2011). Attention and short-term memory: crossroads. Neuropsychologia, 49(6), 1391–1392. doi:10.1016/j.neuropsychologia.2011.04.014.

    PubMed  Google Scholar 

  • O’Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401(6753), 584–587.

    PubMed  Google Scholar 

  • Oh, H., & Leung, H. C. (2010). Specific and nonspecific neural activity during selective processing of visual representations in working memory. Journal of Cognitive Neuroscience, 22(2), 292–306. doi:10.1162/jocn.2009.21250.

    PubMed  Google Scholar 

  • Olsen, R. K., Rondina Ii, R., Riggs, L., Meltzer, J. A., & Ryan, J. D. (2013). Hippocampal and Neocortical Oscillatory Contributions to Visuospatial Binding and Comparison. Journal of Experimental Psychology: General,. doi:10.1037/a0034043.

    Google Scholar 

  • Pelosi, L., Slade, T., Blumhardt, L. D., & Sharma, V. K. (2000). Working memory dysfunction in major depression: an event-related potential study. Clinical Neurophysiology, 111(9), 1531–1543. [pii]: S1388-2457(00)00354-0.

    PubMed  Google Scholar 

  • Picton, T. W. (2010). Human Auditory Evoked Potentials. San Diego: Plural Publishing.

    Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32(1), 3–25.

    PubMed  Google Scholar 

  • Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology, 109(2), 160–174.

    PubMed  Google Scholar 

  • Rama, P., Poremba, A., Sala, J. B., Yee, L., Malloy, M., Mishkin, M., et al. (2004). Dissociable functional cortical topographies for working memory maintenance of voice identity and location. Cerebral Cortex, 14(7), 768–780.

    PubMed  Google Scholar 

  • Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11800–11806.

    PubMed Central  PubMed  Google Scholar 

  • Reinecke, A., Rinck, M., & Becker, E. S. (2008). How preferential is the preferential encoding of threatening stimuli? Working memory biases in specific anxiety and the Attentional Blink. Journal of Anxiety Disorders, 22(4), 655–670. doi:10.1016/j.janxdis.2007.06.004.

    PubMed  Google Scholar 

  • Rihs, T. A., Michel, C. M., & Thut, G. (2009). A bias for posterior alpha-band power suppression versus enhancement during shifting versus maintenance of spatial attention. Neuroimage, 44(1), 190–199. doi:10.1016/j.neuroimage.2008.08.022.

    Google Scholar 

  • Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2(12), 1131–1136.

    PubMed Central  PubMed  Google Scholar 

  • Rosler, A., Mapstone, M. E., Hays, A. K., Mesulam, M. M., Rademaker, A., Gitelman, D. R., et al. (2000). Alterations of visual search strategy in Alzheimer’s disease and aging. Neuropsychology, 14(3), 398–408.

    PubMed  Google Scholar 

  • Rosler, A., Mapstone, M., Hays-Wicklund, A., Gitelman, D. R., & Weintraub, S. (2005). The “zoom lens” of focal attention in visual search: changes in aging and Alzheimer’s disease. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 41(4), 512–519.

    PubMed  Google Scholar 

  • Roth, J. K., Johnson, M. K., Raye, C. L., & Constable, R. T. (2009). Similar and dissociable mechanisms for attention to internal versus external information. Neuroimage, 48(3), 601–608. doi:10.1016/j.neuroimage.2009.07.002.

    PubMed Central  PubMed  Google Scholar 

  • Salmi, J., Rinne, T., Degerman, A., Salonen, O., & Alho, K. (2007). Orienting and maintenance of spatial attention in audition and vision: multimodal and modality-specific brain activations. Brain Structure and Function, 212(2), 181–194.

    PubMed  Google Scholar 

  • Salmi, J., Rinne, T., Koistinen, S., Salonen, O., & Alho, K. (2009). Brain networks of bottom-up triggered and top-down controlled shifting of auditory attention. Brain Research, 1286, 155–164.

    PubMed  Google Scholar 

  • Sanders, L. D., & Astheimer, L. B. (2008). Temporally selective attention modulates early perceptual processing: event-related potential evidence. Perception & Psychophysics, 70(4), 732–742.

    Google Scholar 

  • Santangelo, V., & Spence, C. (2008). Is the exogenous orienting of spatial attention truly automatic? Evidence from unimodal and multisensory studies. Consciousness and Cognition, 17(3), 989–1015. doi:10.1016/j.concog.2008.02.006.

    PubMed  Google Scholar 

  • Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Human Brain Mapping, 26(2), 148–155. doi:10.1002/hbm.20150.

    Google Scholar 

  • Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., Karim, A. A., et al. (2009). Brain oscillatory substrates of visual short-term memory capacity. Current Biology: CB, 19(21), 1846–1852. doi:10.1016/j.cub.2009.08.062.

    PubMed  Google Scholar 

  • Schack, B., & Klimesch, W. (2002). Frequency characteristics of evoked and oscillatory electroencephalic activity in a human memory scanning task. Neuroscience Letters, 331(2), 107–110.

    PubMed  Google Scholar 

  • Serences, J. T., Shomstein, S., Leber, A. B., Golay, X., Egeth, H. E., & Yantis, S. (2005). Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychological Science, 16(2), 114–122.

    PubMed  Google Scholar 

  • Shahin, A. J., Picton, T. W., & Miller, L. M. (2009). Brain oscillations during semantic evaluation of speech. Brain and Cognition, 70(3), 259–266. doi:10.1016/j.bandc.2009.02.008.

    PubMed Central  PubMed  Google Scholar 

  • Shahin, A. J., & Pitt, M. A. (2012). Alpha activity marking word boundaries mediates speech segmentation. The European Journal of Neuroscience, 36(12), 3740–3748. doi:10.1111/ejn.12008.

    PubMed  Google Scholar 

  • Shen, D., & Alain, C. (2011). Temporal attention facilitates short-term consolidation during a rapid serial auditory presentation task. Experimental Brain Research, 215(3–4), 285–292. doi:10.1007/s00221-011-2897-3.

    PubMed  Google Scholar 

  • Shen, D., & Alain, C. (2012). Implicit temporal expectation attenuates auditory attentional blink. PLoS ONE, 7(4), e36031. doi:10.1371/journal.pone.0036031PONE-D-11-21881.

    PubMed Central  PubMed  Google Scholar 

  • Shinn-Cunningham, B. G. (2008). Object-based auditory and visual attention. Trends in Cognitive Science, 12(5), 182–186.

    Google Scholar 

  • Shomstein, S., & Yantis, S. (2002). Object-based attention: sensory modulation or priority setting? Perception & Psychophysics, 64(1), 41–51.

    Google Scholar 

  • Shomstein, S., & Yantis, S. (2004). Control of attention shifts between vision and audition in human cortex. Journal of Neuroscience, 24(47), 10702–10706.

    PubMed  Google Scholar 

  • Shomstein, S., & Yantis, S. (2006). Parietal cortex mediates voluntary control of spatial and nonspatial auditory attention. Journal of Neuroscience, 26(2), 435–439.

    PubMed  Google Scholar 

  • Shulman, G. L., Ollinger, J. M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Petersen, S. E., et al. (1999). Areas involved in encoding and applying directional expectations to moving objects. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 19(21), 9480–9496.

    Google Scholar 

  • Sligte, I. G., Scholte, H. S., & Lamme, V. A. (2008). Are there multiple visual short-term memory stores? PLoS One, 3(2), e1699. doi:10.1371/journal.pone.0001699.

    PubMed Central  PubMed  Google Scholar 

  • Sligte, I. G., Scholte, H. S., & Lamme, V. A. (2009). V4 activity predicts the strength of visual short-term memory representations. Journal of Neuroscience, 29(23), 7432–7438. doi:10.1523/JNEUROSCI.0784-09.2009.

    PubMed  Google Scholar 

  • Smith, K. R., Hsieh, I. H., Saberi, K., & Hickok, G. (2010). Auditory spatial and object processing in the human planum temporale: no evidence for selectivity. Journal of Cognitive Neuroscience, 22(4), 632–639. doi:10.1162/jocn.2009.21196.

    PubMed  Google Scholar 

  • Snyder, J. S., Alain, C., & Picton, T. W. (2006). Effects of attention on neuroelectric correlates of auditory stream segregation. Journal of Cognitive Neuroscience, 18(1), 1–13.

    PubMed  Google Scholar 

  • Sokolov, E. N., & Nezlina, N. I. (2004). Long-term memory, neurogenesis, and signal novelty. [Review]. Neuroscience and Behavioral Physiology, 34(8), 847–857.

    PubMed  Google Scholar 

  • Spieth, W., Curtis, J. F., & Webster, J. C. (1954). Responding to one of two simultaneous messages. Journal of Acoustical Society of America, 26, 391–396.

    Google Scholar 

  • Tallon-Baudry, C., Bertrand, O., Peronnet, F., & Pernier, J. (1998). Induced gamma-band activity during the delay of a visual short-term memory task in humans. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(11), 4244–4254.

    Google Scholar 

  • Tesche, C. D., & Karhu, J. (2000). Theta oscillations index human hippocampal activation during a working memory task. Proceedings of the National Academy of Sciences of the United States of America, 97(2), 919–924.

    PubMed Central  PubMed  Google Scholar 

  • Treisman, A. M. (1964). The effect of irrelevant material on the efficiency of selective listening. American Journal of Psychology, 77, 533–546.

    PubMed  Google Scholar 

  • Tuladhar, A. M., ter Huurne, N., Schoffelen, J. M., Maris, E., Oostenveld, R., & Jensen, O. (2007). Parieto-occipital sources account for the increase in alpha activity with working memory load. Human Brain Mapping, 28(8), 785–792. doi:10.1002/hbm.20306.

    PubMed  Google Scholar 

  • Ungerleider, L. G., Galkin, T. W., & Mishkin, M. (1983). Visuotopic organization of projections from striate cortex to inferior and lateral pulvinar in rhesus monkey. Journal of Comparative Neurology, 217(2), 137–157. doi:10.1002/cne.902170203.

    PubMed  Google Scholar 

  • Valdes-Sosa, M., Bobes, M. A., Rodriguez, V., & Pinilla, T. (1998). Switching attention without shifting the spotlight object-based attentional modulation of brain potentials. Journal of Cognitive Neuroscience, 10(1), 137–151.

    PubMed  Google Scholar 

  • Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748–751. doi:10.1038/nature02447.

    Google Scholar 

  • Woldorff, M. G., Gallen, C. C., Hampson, S. A., Hillyard, S. A., Pantev, C., Sobel, D., et al. (1993). Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proceedings of the National Academy of Sciences of the United States of America, 90(18), 8722–8726.

    PubMed Central  PubMed  Google Scholar 

  • Woods, D. L., & Alain, C. (2001). Conjoining three auditory features: an event-related brain potential study. Journal of Cognitive Neuroscience, 13(4), 492–509.

    PubMed  Google Scholar 

  • Woods, D. L., Alho, K., & Algazi, A. (1991). Brain potential signs of feature processing during auditory selective attention. NeuroReport, 2(4), 189–192.

    PubMed  Google Scholar 

  • Woods, D. L., Alho, K., & Algazi, A. (1994). Stages of auditory feature conjunction: an event-related brain potential study. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 81–94.

    PubMed  Google Scholar 

  • Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(6), RC63.

    Google Scholar 

  • Wu, C. T., Weissman, D. H., Roberts, K. C., & Woldorff, M. G. (2007). The neural circuitry underlying the executive control of auditory spatial attention. Brain Research, 1134(1), 187–198.

    PubMed Central  PubMed  Google Scholar 

  • Yantis, S., & Serences, J. T. (2003). Cortical mechanisms of space-based and object-based attentional control. Current Opinion in Neurobiology, 13(2), 187–193.

    PubMed  Google Scholar 

  • Yuval-Greenberg, S., & Deouell, L. Y. (2007). What you see is not (always) what you hear: induced gamma band responses reflect cross-modal interactions in familiar object recognition. Journal of Neuroscience, 27(5), 1090–1096.

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Canadian Institutes of Health Research (MOP106619, C.A.), the Natural Sciences and Engineering Research Council of Canada (NSERC) (C.A.), and an award from NSERC Collaborative Research and Training Experience Program (K.C.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Alain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Backer, K.C., Alain, C. Attention to memory: orienting attention to sound object representations. Psychological Research 78, 439–452 (2014). https://doi.org/10.1007/s00426-013-0531-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-013-0531-7

Keywords

Navigation