Skip to main content
Log in

One-third of the plastid genes evolved under positive selection in PACMAD grasses

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

We demonstrate that rbcL underwent strong positive selection during the C 3 –C 4 photosynthetic transitions in PACMAD grasses, in particular the 3′ end of the gene. In contrast, selective pressures on other plastid genes vary widely and environmental drivers remain to be identified.

Plastid genomes have been widely used to infer phylogenetic relationships among plants, but the selective pressures driving their evolution have not been systematically investigated. In our study, we analyse all protein-coding plastid genes from 113 species of PACMAD grasses (Poaceae) to evaluate the selective pressures driving their evolution. Our analyses confirm that the gene encoding the large subunit of RubisCO (rbcL) evolved under strong positive selection after C3–C4 photosynthetic transitions. We highlight new codons in rbcL that underwent parallel changes, in particular those encoding the C-terminal part of the protein. C3–C4 photosynthetic shifts did not significantly affect the evolutionary dynamics of other plastid genes. Instead, while two-third of the plastid genes evolved under purifying selection or neutrality, 25 evolved under positive selection across the PACMAD clade. This set of genes encode for proteins involved in diverse functions, including self-replication of plastids and photosynthesis. Our results suggest that plastid genes widely adapt to changing ecological conditions, but factors driving this evolution largely remain to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Apg III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Atkinson RRL, Mockford EJ, Bennett C, Christin PA, Spriggs E, Freckleton RP, Thompson K, Rees M, Osborne CP (2016) C4 photosynthesis boost growth via altered physiology, allocation and size. Nat Plant 2:16038

    Article  CAS  Google Scholar 

  • Besnard G, Christin PA, Malé PJG, Coissac E, Ralimanana H, Vorontsova MS (2013) Phylogenomics and taxonomy of Lecomtelleae (Poaceae), an isolated panicoid lineage from Madagascar. Ann Bot 112:1057–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock R (2007) Structure, function, and inheritance of plastid genomes. In: Bock R (ed) Cell and molecular biology of plastids, topics in current genetics, vol 19. Springer, Berlin, pp 29–63

    Chapter  Google Scholar 

  • Bock DG, Andrew RL, Rieseberg LH (2014) On the adaptive value of cytoplasmic genomes in plants. Mol Ecol 23:4899–4911

    Article  PubMed  Google Scholar 

  • Burgess J (1989) An introduction to plant cell development. Cambridge University Press, Cambridge

    Google Scholar 

  • Burisch C, Wildner GF, Schlitter J (2007) Bioinformatic tools uncover the C-terminal strand of Rubisco’s large subunit as hot-spot for specificity-enhancing mutations. FEBS Lett 581:741–748

    Article  CAS  PubMed  Google Scholar 

  • Burke SV, Wysocki WP, Zuloaga FO, Craine JM, Pires JC, Edger PP, Mayfield-Jones D, Clark LG, Kelchner SA, Duvall MR (2016) Evolutionary relationships in Panicoid grasses based on plastome phylogenomics (Panicoideae; Poaceae). BMC Plant Biol 16:140

    Article  PubMed  PubMed Central  Google Scholar 

  • Burri R, Salamin N, Studer RA, Roulin A, Fumagalli L (2010) Adaptive divergence of ancient gene duplicates in the avian MHC class II beta. Mol Biol Evol 27:2360–2374

    Article  CAS  PubMed  Google Scholar 

  • Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ (2015) Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ 38:1817–1832

    Article  CAS  PubMed  Google Scholar 

  • Christin PA, Osborne CP (2014) The evolutionary ecology of C4 plants. New Phytol 204:765–781

    Article  CAS  PubMed  Google Scholar 

  • Christin PA, Salamin N, Muasya AM, Roalson EH, Russier F, Besnard G (2008) Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis. Mol Biol Evol 25:2361–2368

    Article  CAS  PubMed  Google Scholar 

  • Christin PA, Besnard G, Edwards EJ, Salamin N (2012) Effect of genetic convergence on phylogenetic inference. Mol Phylogenet Evol 62:921–927

    Article  PubMed  Google Scholar 

  • Clegg MT, Gaut BS, Learn GH, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci USA 91:6795–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Las Rivas J, Lozano JJ, Ortiz AR (2002) Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res 12:567–583

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galmés J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madgwick PJ, Haslam RP, Medrano H, Parry MAJ (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ 28:571–579

    Article  Google Scholar 

  • Galmés J, Andralojc PJ, Kapralov MV, Flexas J, Keys AJ, Molins A, Parry MAJ, Conesa MÀ (2014a) Environmentally driven evolution of Rubisco and improved photosynthesis and growth within the C3 genus Limonium (Plumbaginaceae). New Phytol 203:989–999

    Article  PubMed  Google Scholar 

  • Galmés J, Kapralov MV, Andralojc PJ, Conesa MÀ, Keys AJ, Parry MAJ, Flexas J (2014b) Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends. Plant Cell Environ 37:1989–2001

    Article  PubMed  Google Scholar 

  • Galmés J, Kapralov MV, Copolovic LO, Hermida-Carrera C, Niinemets Ü (2015) Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynth Res 123:183

    Article  PubMed  Google Scholar 

  • Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press Inc, New York

    Google Scholar 

  • Gpwg II (2012) New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol 193:304–312

    Article  Google Scholar 

  • Griffith DM, Anderson TM, Osborne CP, Strömberg CAE, Forrestel EJ, Still CJ (2015) Biogeographically distinct controls on C3 and C4 grass distributions: merging community and physiological ecology. Glob Ecol Biogeogr 24:304–313

    Article  Google Scholar 

  • Gutteridge S, Rhades D, Herrmann C (1993) Site-specific mutations in a loop region of the C-terminal domain of the large subunit of ribulose bisphosphate carboxylase/oxygenase that influence substrate partitioning. J Biol Chem 268:7818–7824

    CAS  PubMed  Google Scholar 

  • Hatch MD (1987) C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 895:81–106

    Article  CAS  Google Scholar 

  • Hollingsworth ML, Clark AA, Forrest LL, Richardson J, Pennington RT, Long DG, Cowan R, Chase MW, Gaudeul M, Hollingsworth PM (2009) Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Res 9:439–457

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Humphreys AM, Linder HP (2013) Evidence for recent evolution of cold tolerance in grasses suggests current distribution is not limited by (low) temperature. New Phytol 198:1261–1273

    Article  PubMed  Google Scholar 

  • Iida S, Miyagi A, Aoki S, Ito M, Kadono Y, Kosuge K (2009) Molecular adaptation of rbcL in the heterophyllous aquatic plant Potamogeton. PLoS One 4:e4633

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapralov MV, Filatov DA (2007) Widespread positive selection in the photosynthetic Rubisco enzyme. BMC Evol Biol 7:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapralov MV, Kubien DS, Andersson I, Filatov DA (2011) Changes in Rubisco kinetics during the evolution of C4 photosynthesis in Flaveria (Asteraceae) are associated with positive selection on genes encoding the enzyme. Mol Biol Evol 28:1491–1503

    Article  CAS  PubMed  Google Scholar 

  • Kapralov MV, Smith JAC, Filatov DA (2012) Rubisco evolution in C4 eudicots: an analysis of Amaranthaceae sensu lato. PLoS One 7:e52974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kellogg EA (2015) Flowering plants. Monocots: Poaceae. In: Kellogg EA (ed) The families and genera of vascular plants, vol 13. Springer, New York

    Google Scholar 

  • Kellogg EA, Giullano ND (1997) The structure and function of RuBisCO and their implications for systematic studies. Am J Bot 84:413–428

    Article  CAS  PubMed  Google Scholar 

  • Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A (2014) Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol Biol 14:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín M, Sabater B (2010) Plastid ndh genes in plant evolution. Plant Physiol Biochem 48:636–645

    Article  PubMed  Google Scholar 

  • McFadden G, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:D514–D516

    Article  Google Scholar 

  • Mereschkowski C (1905) Übernatur und ursprung der chromatophoren im pflanzenreiche. Biol Centralb 25:593–604

    Google Scholar 

  • Miller SR (2003) Evidence for the adaptive evolution of the carbon fixation gene rbcL during diversification in temperature tolerance of a clade of hot spring cyanobacteria. Mol Ecol 12:1237–1246

    Article  CAS  PubMed  Google Scholar 

  • Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA 107:4623–4628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen PAT, Kim JS, Kim JH (2015) The complete chloroplast genome of colchicine plants (Colchicum autumnale L. and Gloriosa superba L.) and its application for identifying the genus. Planta 242:223–237

    Article  CAS  PubMed  Google Scholar 

  • Nisbet EG, Grassineau NV, Howe CJ, Abell PI, Regelous M, Nisbet RER (2007) The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology 5:311–335

    Article  CAS  Google Scholar 

  • Olejniczak SA, Łojewska E, Kowalczyk T, Sakowicz T (2016) Chloroplasts: state of research and practical applications of plastome sequencing. Planta 244:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr DJ, Alcântara A, Kapralov MV, Andralojc PJ, Carmo-Silva E, Parry MAJ (2016) Surveying Rubisco diversity and temperature response to improve crop photosynthetic efficiency. Plant Physiol 172:707–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. http://beast.bio.ed.ac.uk/Tracer. Accessed Jan 2017

  • Sage RF (2002) Variation in the k cat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J Exp Bot 53:609–620

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    Article  CAS  PubMed  Google Scholar 

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474

    Article  Google Scholar 

  • Schlitter J, Wildner GF (2000) The kinetics of conformation change as determinant of Rubisco’s specificity. Photosynth Res 65:7–13

    Article  CAS  PubMed  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828–8833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am J Bot 99:349–364

    Article  CAS  PubMed  Google Scholar 

  • Studer R, Christin PA, Williams MA, Orengo C (2014) Stability-activity tradeoffs constrain the adaptive evolution of RubisCO. Proc Natl Acad Sci USA 111:2223–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SH, Ripley BS, Martin T, De-Wet LA, Woodward FI, Osborne CP (2014) Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought. Glob Change Biol 20:1992–2003

    Article  Google Scholar 

  • Tcherkez GBB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103:7246–7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Caemmerer S, Furbank RT (2003) The C4 pathway: an efficient CO2 pump. Photosynth Res 77:191–207

    Article  Google Scholar 

  • Wang M, Kapralov MV, Anisimova M (2011) Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco. BMC Evol Biol 11:266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Washburn JD, Schnable JC, Davidse G, Pires JC (2015) Phylogeny and photosynthesis of the grass tribe Paniceae. Am J Bot 102:1493–1505

    Article  CAS  PubMed  Google Scholar 

  • Weng ML, Ruhlman TA, Jansen RK (2016) Plastid-nuclear interaction and accelerated coevolution in plastid ribosomal genes in Geraniaceae. Genome Biol Evol 8:1824–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitney SM, Houtz RL, Alonso H (2011a) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155:27–35

    Article  CAS  PubMed  Google Scholar 

  • Whitney SM, Sharwood RE, Orr D, White SJ, Alonso H, Galmés J (2011b) Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate in Flaveria. Proc Natl Acad Sci USA 108:14688–14693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Merchant S (1996) The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes. J Biol Chem 271:4632–4639

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang ZH, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acids sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Young JN, Rickaby REM, Kapralov MV, Filatov DA (2012) Adaptive signals in algal Rubisco reveal a history of ancient atmospheric carbon dioxide. Philos Trans R Soc B 367:483–492

    Article  CAS  Google Scholar 

  • Zhang J, Ruhlman TA, Sabir J, Blazier JC, Jansen RK (2015) Coordinated rates of evolution between interacting plastid and nuclear genes in Geraniaceae. Plant Cell 27:563–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JH and GB are members of the Laboratoire Evolution and Diversité Biologique (EDB) part of the LABEX “TULIP” managed by Agence Nationale de la Recherche (ANR-10-LABX-0041). We also acknowledge an Investissement d’Avenir grant of the Agence Nationale de la Recherche (CEBA: ANR-10-LABX-25-01). PAC is funded by a Royal Society University Research Fellowship (Grant number URF120119). This study received support from the PhyloAlps project, and we thank M. Boleda, H. Holota and A. Iribar. We also thank Maria S. Vorontsova for providing plant material. We thank JD Washburn for kindly sharing data before their accessibility on GenBank, and RC Hall for sharing shotgun data for two grass species.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anthony Piot or Guillaume Besnard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piot, A., Hackel, J., Christin, PA. et al. One-third of the plastid genes evolved under positive selection in PACMAD grasses. Planta 247, 255–266 (2018). https://doi.org/10.1007/s00425-017-2781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2781-x

Keywords

Navigation