Skip to main content
Log in

A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

IbZFP1 , encoding a Cys 2 /His 2 zinc finger protein gene from sweetpotato, enhances salt and drought tolerance in transgenic Arabidopsis by regulating ABA signaling pathway, proline biosynthesis, stress responses and ROS scavenging.

In plants, Cys2/His2 zinc finger proteins play important roles in regulating the growth and development or responses to abiotic stresses. In this study, a novel Cys2/His2 zinc finger protein gene, named IbZFP1, was isolated from drought-tolerant sweetpotato [Ipomoea batatas (L.) Lam.] line Xu55-2. Subcellular localization analysis in onion epidermal cells indicated that IbZFP1 was localized to the nucleus. Expression analysis in yeast showed that the full length of IbZFP1 exhibited transcriptional activation. Expression of IbZFP1 was induced by NaCl, polyethylene glycol and abscisic acid (ABA). Overexpression of IbZFP1 significantly enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR (qRT-PCR) analysis showed that overexpression of IbZFP1 up-regulated the genes involved in ABA signaling pathway, proline biosynthesis, stress responses, and ROS scavenging under salt and drought stresses. Meanwhile, Western blot and enzymatic analyses showed that the activities of 9-cis-epoxycarotenoid dioxygenase, pyrroline-5-carboxylate synthase, superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase were also increased. Further component analyses indicated that the significant increase of ABA, proline, soluble sugar and total chlorophyll content and the significant reduction of H2O2 and malonaldehyde content were observed under salt and drought stresses. In addition, the rates of electrolyte leakage and water loss were reduced in transgenic plants. The overall results demonstrate the explicit role of IbZFP1 in conferring salt and drought tolerance in transgenic Arabidopsis plants. The IbZFP1 gene has the potential to be used to enhance the tolerance to abiotic stresses in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

CAT:

Catalase

GFP:

Green fluorescent protein

MDA:

Malondialdehyde

PEG:

Polyethylene glycol

POD:

Peroxidase

RACE:

Rapid amplification of cDNA ends

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

ZFP:

Zinc finger protein

References

  • Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by absiscic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    Article  PubMed  CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Alia, Mohanty P, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:195–200

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Babu RC, Zhang JX, Blum A, Ho THD, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2015) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress plant. Growth Regul. doi:10.1007/s10725-015-0113-3

    Google Scholar 

  • Ben-Amor M, Flores B, Latche A, Bouzayen M, Pech JC, Romojaro F (1999) Inhibition of ethylene biosynthesis by antisense ACC oxidase RNA prevents chilling injury in Charentais cantaloupe melons. Plant Cell Environ 22:1579–1586

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ciftci-Yilmaza S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65:1150–1160

    Article  CAS  Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145

    Article  PubMed  CAS  Google Scholar 

  • Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139:847–856

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De Ronde JA, Cress WA, Krüger GHJ, Strasser RJ, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224

    Article  PubMed  CAS  Google Scholar 

  • Du H, Wu N, Fu J, Wang SP, Li XH, Xiao JH, Xiong LZ (2012) A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot 63:6467–6480

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fan WJ, Zhang M, Zhang HX, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweetpotato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7:e37344

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gal TZ, Glazer I, Koltai H (2004) An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Lett 577:21–26

    Article  PubMed  CAS  Google Scholar 

  • Ganguly M, Datta K, Roychoudhury A, Gayen D, Sengupta DN, Datta SK (2012) Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance. Plant Signal Behav 7:502–509

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gao S, Yu B, Yuan L, Zhai H, He SZ, Liu QC (2011a) Production of transgenic sweetpotato plants resistant to stem nematodes using oryzacystatin-I gene. Sci Hortic 128:408–414

    Article  CAS  Google Scholar 

  • Gao S, Yuan L, Zhai H, Liu CL, He SZ, Liu QC (2011b) Transgenic sweetpotato plants expressing an LOS5 gene are tolerant to salt stress. Plant Cell Tissue Org 107:205–213

    Article  CAS  Google Scholar 

  • Gao H, Song A, Zhu X, Chen F, Jiang J, Chen Y, Sun Y, Shan H, Gu C, Li P, Chen S (2012) The heterologous expression in Arabidopsis of a chrysanthemum Cys2/His2 zinc finger protein gene confers salinity and drought tolerance. Planta 235:979–993

    Article  PubMed  CAS  Google Scholar 

  • Gao WD, Bai S, Li QM, Gao CQ, Liu GF, Li GD, Tan FL (2013) Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra). PLoS One 8:e67462

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hayzer DJ, Leisinger T (1980) The gene-enzyme relationships of proline biosynthesis in Escherichia Coli. J Gen Microbiol 118:287–293

    PubMed  CAS  Google Scholar 

  • Huang J, Zhang H (2007) The plant TFIIIA-type zinc finger proteins and their roles in abiotic stress tolerance. Yi Chuan 29:915–922

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tang HJ, Zhang H (2009) Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun 389:556–561

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S (2001) Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58:625–635

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Zhang C, Lü P, Jiang G, Liu X, Dai F, Gao J (2014) RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals. Plant Biotechnol J 12:38–48

    Article  PubMed  CAS  Google Scholar 

  • Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ (2001) A novel coldinducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25:247–259

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Ahn YO, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2013) Cloning and characterization of an orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures. Plant Physiol Biochem 70:445–454

    Article  PubMed  CAS  Google Scholar 

  • Klug A, Schwabe JW (1995) Protein motifs 5: zinc finger. FASEB J 9:597–604

    PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Koca H, Ozdemir F, Turkan I (2006) Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biol Plant 50:745–748

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kubo K, Sakamoto A, Kobayashi A, Rybka Z, Kanno Y, Nakagawa H, Takatsuji H (1998) Cys2/His2 zinc-finger protein family of petunia: evolution and general mechanism of target-sequence recognition. Nucleic Acids Res 26:608–615

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    Article  PubMed  CAS  Google Scholar 

  • Li G, Tai FJ, Zheng Y, Luo J, Gong SY, Zhang ZT, Li XB (2010) Two cotton Cys2/His2-type zinc-finger proteins, GhDi19-1 and GhDi19-2, are involved in plant response to salt/drought stress and abscisic acid signaling. Plant Mol Biol 74:437–452

    Article  PubMed  CAS  Google Scholar 

  • Li X, Ma H, Huang H, Li D, Yao S (2013) Natural anthocyanins from phytoresources and their chemical researches. Nat Prod Res 27:456–469

    Article  PubMed  CAS  Google Scholar 

  • Liang CY, Xi Y, Shu J, Li J, Yang JL (2004) Construction of a BAC library of Physcomitrella patens and isolation of a LEA gene. Plant Sci 167:491–498

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu QL, Xu KD, Zhong M, Pan YZ, Jiang BB, Liu GL, Jia Y, Zhang HQ (2013a) Overexpression of a novel chrysanthemum Cys2/His2-type zinc finger protein gene DgZFP3 confers drought tolerance in tobacco. Biotechnol Lett 35:1953–1959

    Article  PubMed  CAS  Google Scholar 

  • Liu XX, Zhai SM, Zhao YJ, Sun BC, Liu C, Yang AF, Zhang JR (2013b) Overexpression of the phosphatidylinositol synthase gene (ZmPIS) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize. Plant Cell Environ 36:1037–1055

    Article  PubMed  CAS  Google Scholar 

  • Liu DG, He SZ, Zhai H, Wang LJ, Zhao Y, Wang B, Li RJ, Liu QC (2014a) Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato. Plant Cell Tissue Org 117:1–16

    Article  CAS  Google Scholar 

  • Liu DG, Wang LJ, Liu CL, Song XJ, He SZ, Zhai H, Liu QC (2014b) An Ipomoea batatas iron-sulfur cluster scaffold protein gene, IbNFU1, is involved in salt tolerance. PLoS One 9:e93935

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu DG, Wang LJ, Zhai H, Song XJ, He SZ, Liu QC (2014c) A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato. PLoS One 9:e115128

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu DG, He SZ, Song XJ, Zhai H, Liu N, Zhang DD, Ren ZT, Liu QC (2015a) IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance. Plant Cell Tissue Org 120:701–715

    Article  CAS  Google Scholar 

  • Liu Y, Ji X, Nie X, Qu M, Zheng L, Tan Z, Zhao H, Huo L, Liu S, Zhang B, Wang Y (2015b) Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol 207:692–709

    Article  PubMed  CAS  Google Scholar 

  • Lou XM, Yao QH, Zhang Z, Peng RH, Xiong AS, Wang KK (2007) Expression of human hepatitis B virus large surface antigen gene in transgenic tomato. Clin Vaccine Immunol 14:464–469

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luriea S, Fallika E, Handrosa A, Shapirab R (1997) The possible involvement of peroxidase in resistance to Botrytis cinerea in heat treated tomato fruit. Physiol Mol Plant P 50:141–149

  • Mackay JP, Crossley M (1998) Zinc fingers are sticking together. Trends Biochem Sci 23:1–4

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Kim YS, Song LH, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK (2006) Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580:6537–6542

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Mayor A, Pineda B, Garcia-Abellán JO, Antón T, Garcia-sogo B, Sanchez-Bel P, Flores FB, Atarés A, Angosto T, Pintor-Toro JA, Moreno V, Bolarin MC (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol 169:459–468

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Park SC, Kim YH, Jeong JC, Kim CY, Lee HS, Bang JW, Kwak SS (2011) Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli. Planta 233:621–634

    Article  PubMed  CAS  Google Scholar 

  • Porcel R, Azcón R, Ruiz-Lozano JM (2005) Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. J Exp Bot 56:1933–1942

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Davletova S, Mittler HR (2004) The zinc-finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Araki T, Meshi T, Iwabuchi M (2000) Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene 248:23–32

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA, Aguado-Santacruz G, Jiménez-Bremont JF (2008) Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 46:82–92

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Cornilescu CC, Tyler RC, Cornilescu G, Tonelli M, Lee MS, Markley JL (2005) Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Sci 14:2601–2609

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H, Buaboocha T, Chadchawan S (2013) Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot 86:94–105

    Article  CAS  Google Scholar 

  • Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABII and AXR2 in Arabidopsis. Plant J 12:557–569

    Article  PubMed  CAS  Google Scholar 

  • Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsu K, Ohme-Takagi M, Takatsuji H (2003) Stress-responsive zinc finger gene ZPT2-3 play a role in drought tolerance in petunia. Plant J 36:830–841

    Article  PubMed  CAS  Google Scholar 

  • Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H, Huang J, Zhang HS (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61:2807–2818

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Takatsuji H (1999) Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol Biol 39:1073–1078

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Fang HY (2002) Plant Genetic Engineering. Science Press, Beijing

    Google Scholar 

  • Wang LJ, He SZ, Zhai H, Liu DG, Wang YN, Liu QC (2013) Molecular cloning and fanctional characterization of a salt tolerance-associated gene IbNFU1 from sweetpotato. J Integr Agric 12:27–35

    Article  Google Scholar 

  • Wang FB, Zhai H, An YY, Si ZZ, He SZ, Liu QC (2015) Overexpression of IbMIPS1 gene enhances salt tolerance in transgenic sweetpotato. J Integr Agric. doi:10.1016/S2095-3119(14)60973-4

    Google Scholar 

  • Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582:1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    Article  PubMed  CAS  Google Scholar 

  • Yang YF, Guan SK, Zhai H, He SZ, Liu QC (2009) Development and evaluation of a storage root-bearing sweetpotato somatic hybrid between Ipomoea batatas (L.) Lam. and I. triloba L. Plant Cell Tiss Org 99:83–89

    Article  Google Scholar 

  • Yang SJ, Vanderbeld B, Wan JX, Huang YF (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–490

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba Y, Nanjo T, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Stress-responsive and developmental regulation of Δ1-pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana. Biochem Biophys Res Commun 261:766–772

    Article  PubMed  CAS  Google Scholar 

  • Zang N, Zhai H, Gao S, Chen W, He SZ, Liu QC (2009) Efficient production of transgenic plants using the bar gene for herbicide resistance in sweetpotato. Sci Hortic 122:649–653

    Article  CAS  Google Scholar 

  • Zhai H, Wang FB, Si ZZ, Huo JX, Xing L, An YY, He SZ, Liu QC (2015) A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweetpotato. Plant Biotechnol J. doi:10.1111/pbi.12402

    Google Scholar 

  • Zhang X, Henriques R, Lin SS (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67

    Article  PubMed  CAS  Google Scholar 

  • Zhao P, Liu F, Ma M, Gong J, Wang Q, Jia P, Zheng G, Liu H (2011) Overexpression of AtLEA3-3 confers resistance to cold stress in Escherichia coli and provides enhanced osmotic stress tolerance and ABA sensitivity in Arabidopsis thaliana. Mol Biol 45:851–862

    Google Scholar 

  • Zhao Q, Zhang H, Wang T, Chen SX, Dai SJ (2013) Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteom 82:230–253

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Project Fund of the Shanghai Municipal Committee of Agriculture (zhongzi2014-2) and National Natural Science Foundation (31200075, 31200076). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanhong Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 226 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Tong, W., Zhu, H. et al. A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis . Planta 243, 783–797 (2016). https://doi.org/10.1007/s00425-015-2443-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2443-9

Keywords

Navigation