Skip to main content
Log in

Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Trees require a long maturation period, known as juvenile phase, before they can reproduce, complicating their genetic improvement as compared to annual plants. ‘Spadona’, one of the most important European pear (Pyrus communis L.) cultivars grown in Israel, has a very long juvenile period, up to 14 years, making breeding programs extremely slow. Progress in understanding the molecular basis of the transition to flowering has revealed genes that accelerate reproductive development when ectopically expressed in transgenic plants. A transgenic line of ‘Spadona’, named Early Flowering-Spadona (EF-Spa), was produced using a MdTFL1 RNAi cassette targeting the native pear genes PcTFL1-1 and PcTFL1-2. The transgenic line had three T-DNA insertions, one assigned to chromosome 2 and two to chromosome 14 PcTFL1-1 and PcTFL1-2 were completely silenced, and EF-Spa displayed an early flowering phenotype: flowers developed already in tissue culture and on most rooted plants 1–8 months after transfer to the greenhouse. EF-Spa developed solitary flowers from apical or lateral buds, reducing vegetative growth vigor. Pollination of EF-Spa trees generated normal-shaped fruits with viable F1 seeds. The greenhouse-grown transgenic F1 seedlings formed shoots and produced flowers 1–33 months after germination. Sequence analyses, of the non-transgenic F1 seedlings, demonstrated that this approach can be used to recover seedlings that have no trace of the T-DNA. Thus, the early flowering transgenic line EF-Spa obtained by PcTFL1 silencing provides an interesting tool to accelerate pear breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almehdi AA, Parfitt DE (1986) In vitro propagation of peach: I. Propagation of ‘Lovell’ and ‘Nemaguard’ peach rootstocks. Fruit Var J 40:12–17

    Google Scholar 

  • Alt-Mörbe J, Kühlmann H, Schröder J (1989) Differences in induction of Ti plasmid virulence genes virG and virD and continued control of virD expression by four external factors. Mol Plant Microbe Interact 2:301–308

    Article  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31

    Article  PubMed  CAS  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  PubMed  CAS  Google Scholar 

  • Celton JM, Chagné D, Tustin SD, Terakami S, Nishitani C, Yamamoto T, Gardiner SE (2009) Update on comparative genome mapping between Malus and Pyrus. BMC Res Notes 2:182–188

    Google Scholar 

  • Corbesier L, Coupland G (2006) The quest for florigen: a review of recent progress. J Exp Bot 57:3395–3403

    Article  PubMed  CAS  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712

    Article  PubMed  CAS  Google Scholar 

  • Esumi T, Tao R, Yonemori K (2005) Isolation of LEAFY and TERMINAL FLOWER 1 homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae. Sex Plant Reprod 17:277–287

    Article  CAS  Google Scholar 

  • Fischer M (2009) Pear breeding. In: Mohan Jain S, Priyadarshan PM (eds) Breeding plantation tree crops: temperate species. Springer, New York, pp 1–26

    Google Scholar 

  • Flachowsky H, Le Roux PM, Peil A, Patocchi A, Richter K, Hanke MV (2011) Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192:364–377

    Article  PubMed  CAS  Google Scholar 

  • Flachowsky H, Hattasch C, Hofer M, Peil A, Hanke MV (2010) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251–263

    Article  PubMed  CAS  Google Scholar 

  • Flachowsky H, Hanke M-V, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226

    Article  CAS  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–145

    Article  CAS  Google Scholar 

  • Hackett WP (1985) Juvenility, maturity, and rejuvenation in woody plants. Hortic Rev 7:109–155

    Google Scholar 

  • Hanania U, Velcheva M, Sahar N, Perl A (2004) An improved method for isolating high-quality DNA from Vitis vinifera nuclei. Plant Mol Biol Rep 22:173–177

    Article  Google Scholar 

  • Hanke MV, Flachowsky H, Peil A, Hättasch C (2007) No flower no fruit—genetic potentials to trigger flowering in fruit trees. Genes Genomes Genomics 1:1–20

    Google Scholar 

  • Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA 102:7748–7753

    Article  PubMed  CAS  Google Scholar 

  • Hattasch C, Flachowsky H, Kapturska D, Hanke MV (2008) Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus × domestica). Tree Physiol 28:1459–1466

    Article  PubMed  Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    Article  PubMed  CAS  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  PubMed  CAS  Google Scholar 

  • Henderson IR, Dean C (2004) Control of Arabidopsis flowering: the chill before the bloom. Development 131:3829–3838

    Article  PubMed  CAS  Google Scholar 

  • Hsu CY, Liu YX, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861

    Article  PubMed  CAS  Google Scholar 

  • Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–203

    Article  PubMed  CAS  Google Scholar 

  • Jackson JE (2003) Biology of apples and pears. Cambridge University Press, UK

    Book  Google Scholar 

  • Kanno A, Nakada M, Akita Y, Hirai M (2007) Class B gene expression and the modified ABC model in nongrass monocots. Sci World 7:268–279

    Article  CAS  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  PubMed  CAS  Google Scholar 

  • Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant Cell Physiol 51:561–575

    Article  PubMed  CAS  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci 131:74–81

    CAS  Google Scholar 

  • Kotoda N, Wada M, Kusaba S, Kano-Murakami Y, Masuda T, Soejima J (2002) Overexpression of MdMADS5, an APETALA1-like gene of apple, causes early flowering in transgenic Arabidopsis. Plant Sci 162:679–687

    Article  CAS  Google Scholar 

  • Laurens F, Durel CE, Patocchi A, Peil A, Salvi S, Tartarini S, Velasco R, van de Weg E (2010) Review on apple genetics and breeding programmes and presentation of a new European initiative to increase fruit breeding efficiency. J Fruit Sci 27:102–107

    Google Scholar 

  • Lee JH, Hong SM, Yoo SJ, Park OK, Lee JS, Ahn JH (2006) Integration of floral inductive signals by flowering locus T and suppressor of overexpression of Constans 1. Physiol Plant 126:475–483

    CAS  Google Scholar 

  • Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11:1007–1018

    Article  PubMed  CAS  Google Scholar 

  • Liu Y-G, Chen Y, Zhang Q (2004) Amplification of genomic sequences flanking T-DNA insertions by thermal asymmetric interlaced polymerase chain reaction. In: Peña L (ed) Transgenic plants: methods and protocols. Humana Press, USA, pp 341–348

    Google Scholar 

  • Matsuda N, Ikeda K, Kurosaka M, Takashina T, Isuzugawa K, Endo T, Omura M (2009) Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. J Jpn Soc Hortic Sci 78:410–416

    Article  CAS  Google Scholar 

  • Mimida N, Kotoda N, Ueda T, Igarashi M, Hatsuyama Y, Iwanami H, Moriya S, Abe K (2009) Four TFL1/CEN-Like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus × domestica Borkh.). Plant Cell Physiol 50:394–412

    Article  PubMed  CAS  Google Scholar 

  • Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19:263–267

    Article  PubMed  CAS  Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43

    Article  Google Scholar 

  • Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609–1615

    PubMed  CAS  Google Scholar 

  • Ratcliffe OJ, Bradley DJ, Coen ES (1999) Separation of shoot and floral identity in Arabidopsis. Development 126:1109–1120

    PubMed  CAS  Google Scholar 

  • Russell DW, Sambrook J (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892

    Article  PubMed  CAS  Google Scholar 

  • Szankowski I, Waidmann S, El-Din Saad Omar A, Flachowsky H, Hättasch C, Hanke MV et al (2009) RNAi-Silencing of MdTFL1 induces early flowering in apple. Acta Hortic 839:633–636

    CAS  Google Scholar 

  • Tan FC, Swain SM (2006) Genetics of flower initiation and development in annual and perennial plants. Physiol Plant 128:8–17

    Article  CAS  Google Scholar 

  • Tränkner C, Lehmann S, Hoenicka H, Hanke M-V, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324

    Article  PubMed  Google Scholar 

  • Tromp J (1980) Flower-bud formation in apple under various day and night temperature-regimes. Sci Hortic 13:235–243

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Visser T (1964) Juvenile phase and growth of apple and pear seedlings. Euphytica 13:119–129

    Google Scholar 

  • Waterhouse PM, Graham MW, Wang M-B (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, van de Weg WE, Hayashi T (2004) Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Hortic 663:51–56

    CAS  Google Scholar 

  • Yancheva SD, Shlizerman LA, Golubowicz S, Yabloviz Z, Perl A, Hanania U, Flaishman MA (2006) The use of green fluorescent protein (GFP) improves Agrobacterium-mediated transformation of ‘Spadona’ pear (Pyrus communis L.). Plant Cell Rep 25:183–189

    Article  PubMed  CAS  Google Scholar 

  • Yao JL, Dong YH, Kvarnheden A, Morris B (1999) Seven MADS-box genes in apple are expressed in different parts of the fruit. J Am Soc Hortic Sci 124:8–13

    Google Scholar 

  • Zhu LH, Li XY, Welander M (2009) Can Arabidopsis AP1 gene shorten the juvenility of apple? Acta Hortic 829:259–264

    CAS  Google Scholar 

  • Zielinski QB (1963) Precocious flowering of pear seedlings: carrying the cardinal red color gene. J Hered 54:75–76

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Israel Chief Scientist of the Ministry of Agriculture grant. We thank Yves Lespinasse for providing the pollen of the pear cultivar p2714RR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe A. Flaishman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freiman, A., Shlizerman, L., Golobovitch, S. et al. Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2 . Planta 235, 1239–1251 (2012). https://doi.org/10.1007/s00425-011-1571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1571-0

Keywords

Navigation