Skip to main content

Advertisement

Log in

A novel MERTK mutation causing retinitis pigmentosa

  • Genetics
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Retinitis pigmentosa (RP) is a genetically heterogeneous inherited retinal dystrophy. To date, over 80 genes have been implicated in RP. However, the disease demonstrates significant locus and allelic heterogeneity not entirely captured by current testing platforms. The purpose of the present study was to characterize the underlying mutation in a patient with RP without a molecular diagnosis after initial genetic testing.

Methods

Whole-exome sequencing of the affected proband was performed. Candidate gene mutations were selected based on adherence to expected genetic inheritance pattern and predicted pathogenicity. Sanger sequencing of MERTK was completed on the patient’s unaffected mother, affected brother, and unaffected sister to determine genetic phase.

Results

Eight sequence variants were identified in the proband in known RP-associated genes. Sequence analysis revealed that the proband was a compound heterozygote with two independent mutations in MERTK, a novel nonsense mutation (c.2179C > T) and a previously reported missense variant (c.2530C > T). The proband’s affected brother also had both mutations. Predicted phase was confirmed in unaffected family members.

Conclusion

Our study identifies a novel nonsense mutation in MERTK in a family with RP and no prior molecular diagnosis. The present study also demonstrates the clinical value of exome sequencing in determining the genetic basis of Mendelian diseases when standard genetic testing is unsuccessful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Evans RJ, Schwarz N, Nagel-Wolfrum K, Wolfrum U, Hardcastle AJ, Cheetham ME (2010) The retinitis pigmentosa protein RP2 links pericentriolar vesicle transport between the Golgi and the primary cilium. Hum Mol Gen 19:1358–1367. doi:10.1093/hmg/ddq012

    Article  CAS  PubMed  Google Scholar 

  2. Busskamp V, Duebel J, Balya D et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417. doi:10.1126/science.1190897

    Article  CAS  PubMed  Google Scholar 

  3. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809. doi:10.1016/S0140-6736(06)69740-7

    Article  CAS  PubMed  Google Scholar 

  4. Farrar G, Kenna PF, Humphries P (2002) New EMBO member’s review: on the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J 21:857–864. doi:10.1093/emboj/21.5.857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino FS, Parmeggiani F (2011) Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics 12:238–249. doi:10.2174/138920211795860107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernandez-San Jose P, Blanco-Kelly F, Corton M, Trujillo-Tiebas M-J, Gimenez A, Avila-Fernandez A, Garcia-Sandoval B, Lopez-Molina M-I, Hernan I, Carballo M, Riveiro-Alvarez R, Ayuso C (2015) Prevalence of rhodopsin mutations in autosomal dominant retinitis pigmentosa in spain: clinical and analytical review in 200 families. Acta Ophthalmol 93:e38–e44. doi:10.1111/aos.12486

    Article  CAS  PubMed  Google Scholar 

  7. Daiger SP, Sullivan LS, Bowne SJ (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84 10.1111/cge.12203

  8. Wang NH-H, Chen S-J, Yang C-F, Chen H-W, Chuang H-P, Lu Y-H, Chen C-H, Wu J-Y, Niu D-M, Chen Y-T (2016) Homozygosity mapping and whole-genome sequencing links a missense mutation in POMGNT1 to autosomal recessive retinitis pigmentosa missense mutation in POMGNT1 and autosomal recessive RP. Invest Ophthalmol Vis Sci 57:3601–3609. doi:10.1167/iovs.16-19463

    Article  CAS  PubMed  Google Scholar 

  9. Anasagasti A, Irigoyen C, Barandika O, López de Munain A, Ruiz-Ederra J (2012) Current mutation discovery approaches in retinitis Pigmentosa. Vis Res 75:117–129. doi:10.1016/j.visres.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  10. Boye SE, Boye SL, Lewin AS, Hauswirth WW (2013) A comprehensive review of retinal gene therapy. Mol Ther 21:509–519. doi:10.1038/mt.2012.280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsou W-I, Nguyen K-QN, Calarese DA, Garforth SJ, Antes AL, Smirnov SV, Almo SC, Birge RB, Kotenko SV (2014) Receptor tyrosine kinases, TYRO3, AXL, and MER, demonstrate distinct patterns and complex regulation of ligand-induced activation. J Biol Chem 289:25750–25763. doi:10.1074/jbc.M114.569020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zagorska A, Traves PG, Lew ED, Dransfield I, Lemke G (2014) Diversification of TAM receptor tyrosine kinase function. Nat Immunol 15:920–928. doi:10.1038/ni.2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen C, Li Q, Darrow AL, Wang Y, Derian CK, Yang J, de Garavilla L, Andrade-Gordon P, Damiano BP (2004) Mer receptor tyrosine kinase signaling participates in platelet function. Arterioscler Thromb Vasc Biol 24:1118–1123. doi:10.1161/01.atv.0000130662.30537.08

    Article  CAS  PubMed  Google Scholar 

  14. Linger RMA, Keating AK, Earp HS, Graham DK (2008) TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res 100:35–83. doi:10.1016/S0065-230X(08)00002-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parinot C, Nandrot FE (2016) A comprehensive review of mutations in the MERTK proto-oncogene. In: Bowes Rickman C, LaVail MM, Anderson ER, Grimm C, Hollyfield J, Ash J (eds) Retinal degenerative diseases: mechanisms and experimental therapy. Springer International Publishing, Cham, pp 259–265

    Chapter  Google Scholar 

  16. Nandrot EF, Kim Y, Brodie SE, Huang X, Sheppard D, Finnemann SC (2004) Loss of synchronized retinal phagocytosis and age-related blindness in mice lacking αvβ5 integrin. J Exp Med 200:1539–1545. doi:10.1084/jem.20041447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nandrot EF, Anand M, Almeida D, Atabai K, Sheppard D, Finnemann SC (2007) Essential role for MFG-E8 as ligand for αvβ5 integrin in diurnal retinal phagocytosis. Proc Natl Acad Scie USA 104:12005–12010. doi:10.1073/pnas.0704756104

    Article  CAS  Google Scholar 

  18. Qin S (2016) Blockade of MerTK activation by AMPK inhibits RPE cell phagocytosis. In: Bowes Rickman C, LaVail MM, Anderson ER, Grimm C, Hollyfield J, Ash J (eds) Retinal degenerative diseases: mechanisms and experimental therapy. Springer International Publishing, Cham, pp 773–778

    Chapter  Google Scholar 

  19. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. doi:10.1038/35057062

    Article  Google Scholar 

  20. Carnevali P, Baccash J, Halpern AL, Nazarenko I, Nilsen GB, Pant KP, Ebert JC, Brownley A, Morenzoni M, Karpinchyk V, Martin B, Ballinger DG, Drmanac R (2012) Computational techniques for human genome resequencing using mated gapped reads. J Comput Biol 19:279–292. doi:10.1089/cmb.2011.0201

    Article  CAS  PubMed  Google Scholar 

  21. Drmanac R, Sparks AB, Callow MJ et al (2010) Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327:78–81. doi:10.1126/science.1181498

    Article  CAS  PubMed  Google Scholar 

  22. McHenry CL, Liu Y, Feng W, Nair AR, Feathers KL, Ding X, Gal A, Vollrath D, Sieving PA, Thompson DA (2004) MERTK arginine-844-cysteine in a patient with severe rod–cone dystrophy: loss of mutant protein function in transfected cells. Invest Ophthalmol Vis Sci 45:1456–1463. doi:10.1167/iovs.03-0909

    Article  PubMed  Google Scholar 

  23. Bourne MC, Campbell DA, Tansley K (1938) Hereditary degeneration of the rat retina. Br J Ophthalmol 22:613–623. doi:10.1136/bjo.22.10.613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, Vollrath D (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Gen 9:645–651. doi:10.1093/hmg/9.4.645

    Article  PubMed  Google Scholar 

  25. Nandrot E, Dufour EM, Provost AC, Péquignot MO, Bonnel S, Kn G, Marchant D, Rouillac C, Sépulchre de Condé B, Bihoreau M-T, Shaver C, Dufier J-L, Marsac C, Lathrop M, Menasche M, Abitbol MM (2000) Homozygous deletion in the coding sequence of the C-MER gene in RCS rats unravels general mechanisms of physiological cell adhesion and apoptosis. Neurobiol Dis 7:586–599. doi:10.1006/nbdi.2000.0328

    Article  CAS  PubMed  Google Scholar 

  26. Bok D, Hall MO (1971) The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J Cell Biol 49:664–682. doi:10.1083/jcb.49.3.664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finnemann SC, Nandrot EF (2006) MERTK activation during rpe phagocytosis in vivo requires αvβ5 integrin. Adv Exp Med Biol 572:499–503. doi:10.1007/0-387-32442-9_69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dowling JE, Sidman RL (1962) Inherited retinal dystrophy in the rat. J Cell Biol 14:73–109. doi:10.1083/jcb.14.1.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weisschuh N, Mayer AK, Strom TM et al (2016) Mutation detection in patients with retinal dystrophies using targeted next generation sequencing. PLoS One 11:e0145951. doi:10.1371/journal.pone.0145951

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend our deep gratitude to the proband and his family. We also thank Vaiva Liakaite at the University of Illinois at Chicago’s DNA Services Facility and the sequencing center at BGI for assisting with the present study. Lastly, the authors thank Darshana Patel for assisting with the coordination of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Grassi.

Ethics declarations

Funding

This report was supported by funding from Search for Vision, R01EY023644, NEI core grant EY001792, and Research to Prevent Blindness (departmental support). The sponsor had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-khersan, H., Shah, K.P., Jung, S.C. et al. A novel MERTK mutation causing retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 255, 1613–1619 (2017). https://doi.org/10.1007/s00417-017-3679-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3679-9

Keywords

Navigation