Skip to main content
Log in

Ultrastructural study of mitochondria in the spinal cord of transgenic mice with a G93A mutant SOD1 gene

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine mitochondrial changes in the spinal cord of transgenic mice of a relatively low transgenic copy number (gene copy 10) expressing a G93A mutant human Cu/Zn superoxide dismutase (SOD1) that were generated in our own laboratories by electron and immunoelectron microscopy from presymptomatic to symptomatic stages. Age-matched non-transgenic mice served as controls at each stage. Ultrastructurally, at the early presymptomatic stage, many mitochondria in large myelinated axons exhibited swelling with an increased number of cristae, and bore small vacuoles in the matrix, cristae or both, in the anterior root exit zone, anterior root, and in the neuropils of the ventral portion of the anterior horn. At the late presymptomatic stage, vacuoles of various sizes (including large ones) were observed in the same regions as in the previous stage. The intermembrane space of mitochondria was also vacuolated. In mitochondria with advanced vacuolation, the vacuolar space was filled with a granular or amorphous substance. At the symptomatic stage, mitochondrial vacuolation seen in the late presymptomatic stage persisted, although to a lesser extent. These vacuolated mitochondria were predominantly seen in the axons, but not in the somata of normal-looking neurons or dendrites at any stage, which differs from that described in other reports. Non-transgenic littermates occasionally exhibited vacuolar changes in the axons of anterior horns. However, they were smaller both in size and number than those in transgenic mice. By immunoelectron microscopy using an immunogold labeling method, at the presymptomatic and symptomatic stages both SOD1 and ubiquitin determinants were localized in vacuolated mitochondria, particularly in the granular or amorphous substance of large vacuoles, but were not detected in most normal-appearing mitochondria. The SOD1-immunoreactive mitochondria were exclusively observed in the axons, and not in proximal dendrites or somata. These findings suggest that the toxicity of mutant SOD1 directly affects mitochondria in the axons and increases with the disease progression. Thus, the mutant SOD1 toxicity might disrupt axonal transport of substrates needed for neuronal viability, leading to motor neuron degeneration. The localization of both ubiquitin and SOD1 in vacuolated mitochondria indicates that protein degradation by ubiquitin-proteasomal system may be also disrupted by several pathomechanisms, such as decreased processing of ubiquitinated proteins due to impairment of mitochondrial function or of proteasomal function, both of which are caused by mutant SOD1. Moreover, giant mitochondrial vacuoles occupying almost the entire axonal caliber could be another contributing factor in motor neuron degeneration, in that they could physically block axonal transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Andreassen OA, Ferrante RJ, Klivenyi P, Klein AM, Shinobu LA, Epstein CJ, Beal MF (2000) Partial deficiency of manganese superoxide dismutase exacerbates a transgenic mouse model of amyotrophic lateral sclerosis. Ann Neurol 47:447–455

    Article  CAS  PubMed  Google Scholar 

  2. Andreassen OA, Ferrante RJ, Klivenyi P, Klein AM, Dedeoglu A, Albers DS, Kowell NW, Beal MF (2001) Transgenic ALS mice show increased vulnerability to the mitochondrial toxins MPTP and 3-nitropropionic acid. Exp Neurol 168:356–363

    Article  CAS  PubMed  Google Scholar 

  3. Asayama K, Janco RL, Burr IM (1985) Selective induction of manganous superoxide dismutase in human monocytes. Am J Physiol 249:C393–C397

    CAS  PubMed  Google Scholar 

  4. Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 1:119–130

    Google Scholar 

  5. Borthwick GM, Johnson MA, Ince PG, Shaw PJ, Turnbull DM (1999) Mitochondrial enzyme in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol 46:787–790

    Google Scholar 

  6. Bowling AC, Schulz JB, Brown RH, Beal MF (1993) SOD activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic ALS. J Neurochem 61:2322–2325

    CAS  PubMed  Google Scholar 

  7. Browne SE, Bowling AC, Baik MJ, Gurney M, Brown RH Jr, Beal MF (1998) Metabolic dysfunction in familial, but not sporadic, amyotrophic lateral sclerosis. J Neurochem 71:281–287

    CAS  PubMed  Google Scholar 

  8. Carri MT, Ferri A, Battistoni A, Famhy L, Cabbianelli R, Poccia F, Rotilio G (1997) Expression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cyotosolic Ca2+ concentration in transfected neuroblastoma SH-Sy5Y cells. FEBS Lett 414:365–368

    Article  CAS  PubMed  Google Scholar 

  9. Comi GP, Bordoni A, Salani S, Franceschina L, Sciacco M, Prelle A, Fortunato F, Zeviani M, Napoli L, Bresolin N, Moggio M, Ausenda CD, Taanman J-W, Scarlato G (1998) Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann Neurol 43:110–116

    Google Scholar 

  10. Crapo JD, Oury T, Rabouille C, Slot JW, Chang LY (1992) Copper, zinc superoxide dismutase in primarily a cytosolic protein in human cells. Proc Natl Acad Sci USA 89:10405–10409

    CAS  PubMed  Google Scholar 

  11. Curti D, Malaspina A, Facchetti G, Camana C, Mazzini L, Tosca P, Zerbi F, Ceroni M (1996) Amyotrophic lateral sclerosis: oxidative energy metabolism and calcium homeostasis in peripheral blood lymphocytes. Neurology 47:1060–1064

    CAS  PubMed  Google Scholar 

  12. Dal Canto MC, Gurney ME (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 145:1271–1280

    PubMed  Google Scholar 

  13. Dal Canto MC, Gurney ME (1995) Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu, Zn SOD, and in mice overexpressing wild-type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res 676:25–40

    Article  PubMed  Google Scholar 

  14. Dhaliwal GK, Grewal RP (2000) Mitochondrial DNA deletion mutation levels are elevated in ALS brains. Neuroreport 11:2507–2509

    CAS  PubMed  Google Scholar 

  15. Estevez AG, Crow JP, Sampson JB, Reiter C, Zhuang YX, Richardson GJ, Tarpey MM, Barbeito L, Beckman JS (1999) Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286:2498–2500

    Article  CAS  PubMed  Google Scholar 

  16. Fujita K, Yamauchi M, ShibayamaK, Ando M, Honda M, Nagata Y (1996) Decreased cytochrome c oxidase activity but unchanged superoxide dismutase and glutathione peroxidase activities in the spinal cords of patients with amyotrophic lateral sclerosis. J Neurosci Res 45:276–281

    Article  CAS  PubMed  Google Scholar 

  17. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, et al (1994) Motor neuron degeneration in mice that express a human Cu/Zn superoxide dismutase mutation. Science 264:1772–1775

    CAS  PubMed  Google Scholar 

  18. Higgins CMJ, Jung C, Ding H, Xu Z (2002) Mutant Cu, Zn superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS. J Neurosci 22:RC215

    PubMed  Google Scholar 

  19. Ince P, Stout N, Shaw P, Slade J, Hunziker W, Heizmann CW, Baimbridge KG (1993) Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol Applied Neurobiol 19:291–299

    CAS  Google Scholar 

  20. Jaarsma D, Rognoni F, Duijn W van, Verspaget HW, Haasdijk ED, Holstege JC (2001) CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropathol 102:293–305

    CAS  PubMed  Google Scholar 

  21. Jung C, Higgins CMJ, Xu Z (2002) Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J Neurochem 3:535–545

    Article  Google Scholar 

  22. Kaal EC, Vlug AS, Versleijen MW, Kuilman M, Joosten EA, Bar PR (2000) Chronic mitochondrial inhibition induces selective motoneuron death in vitro: a new model for amyotrophic lateral sclerosis. J Neurochem 74:1158–1165

    CAS  PubMed  Google Scholar 

  23. Kong J, Xu Z (1998) Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci 18:3241–3250

    CAS  PubMed  Google Scholar 

  24. Levine JB, Kong J, Nadler M, Xu Z (1999) Astrocytes interact intimately with degenerating motor neurons in mouse amyotrophic lateral sclerosis (ALS). Glia 28:215–224

    Article  CAS  PubMed  Google Scholar 

  25. Masui Y, Mozai T, Kakehi K (1985) Functional and morphometric study of the liver in motor neuron disease. J Neurol 232:15–19

    CAS  PubMed  Google Scholar 

  26. Mattiazzi M, D’Aurelio M, Gajewski CD, Martushova K, Kiaei M, Beal MF, Manfredi G (2002) Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 277:29626–29633

    Article  CAS  PubMed  Google Scholar 

  27. McLaughlin BA, Nelson D, Silver IA, Erecinska M, Chesselet MF (1998) Methylmalonate toxicity in primary neuronal cultures. Neuroscience 86:279–290

    Article  CAS  PubMed  Google Scholar 

  28. Menzies FM, Cookson MR, Taylor RW, Turnbull DM, Chrzanowska-Lightowlers ZMA, Dong L, Figlewicz DA, Shaw PJ (2002) Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain 125:1522–1533

    Article  PubMed  Google Scholar 

  29. Nakano K, Hirayama K, Terao K (1987) Hepatic ultrastructural changes and liver dysfunction in amyotrophic lateral sclerosis. Arch Neurol 44:103–106

    CAS  PubMed  Google Scholar 

  30. Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutase (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276:38388–38393

    Article  PubMed  Google Scholar 

  31. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    CAS  PubMed  Google Scholar 

  32. Sasaki S, Iwata M (1996) Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology 47:535–540

    CAS  PubMed  Google Scholar 

  33. Sasaki S, Iwata M (1996) Ultrastructural study of synapses in the anterior horn neurons of patients with amyotrophic lateral sclerosis. Neurosci Lett 204:53–56

    Article  CAS  PubMed  Google Scholar 

  34. Siklos L, Engelhardt J, Harati Y, Smith RG, Joo F, Appel SH (1996) Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophic lateral sclerosis. Ann Neurol 39:203–216

    PubMed  Google Scholar 

  35. Slot JW, Geuze HJ, Freeman BA, Crapo JD (1986) Intracellular localization of the copper-zinc and manganese superoxide dismutases in rat liver parenchymal cells. Lab Invest 55:363–571

    CAS  PubMed  Google Scholar 

  36. Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. a physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276:38084–38089

    CAS  PubMed  Google Scholar 

  37. Weisiger RA, Fridovich I (1973) Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial localization. J Biol Chem 248:4793–4796

    Google Scholar 

  38. Wiedau-Pazos M, Goto JJ, Rabizadch S, Gralla EB, Roc JA, Lee MK, Valentine JS, Bredesen DE (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271:515–518

    CAS  PubMed  Google Scholar 

  39. Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA (2002) Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem 80:616–625

    Article  CAS  PubMed  Google Scholar 

  40. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116

    CAS  PubMed  Google Scholar 

  41. Xu ZS, Higgins CMJ (2002) Mechanism of mitochondrial vacuolation in a transgenic mouse model for ALS. Amyotroph Lateral Scler other Motor Neuron Disord 3 (Suppl 2):26–27

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for General Scientific Research (C) from the Japanese Ministry of Education, Science and Culture, and by a grant from the Japan ALS Association. We gratefully acknowledge the technical assistance of Dr. N. Shibata and Mr. M. Karita (Department of Pathology, Tokyo Women’s Medical University, Tokyo) in immunoelectron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichi Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, S., Warita, H., Murakami, T. et al. Ultrastructural study of mitochondria in the spinal cord of transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol 107, 461–474 (2004). https://doi.org/10.1007/s00401-004-0837-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-004-0837-z

Keywords

Navigation