Skip to main content
Log in

Community structure of epiphytic algae on three different macrophytes at Acarlar floodplain forest (northern Turkey)

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the species composition, biodiversity and, relative abundance of epiphytic algae and their relationship with environmental variables on three different macrophytes (Nymphaea alba, Ceratophyllum demersum, Typha latifolia ) at Acarlar Floodplain Forest (AFF). Epiphytic algae were gathered monthly by collecting aquatic plants between November 2011 and October 2012, except in winter when there were no plants. In this study, 67 taxa on N. alba, 66 taxa on C. demersum and 66 taxa on T. latifolia were identified as epiphytic algae. The mean value of species richness was 17, that of diversity was 1.5 and that of evenness was 0.54 for epiphytic algae on N. alba, 17, 1.1, and 0.39 on C. demersum, and 18, 1.64, and 0.56 on T. latifolia, respectively. Oscillatoria sp. and Komvophoron crassum (Vozzen) Anagnostidis and Komárek were the most abundant and consistent epiphytic algal species, occurring in high abundance on all macrophytes. Results show that species composition of epiphytic algae was different, but diversity values were similar on all the macrophytes. The hydrological pulse is one of the most important factors determining the physical and chemical environment of the epiphytic algal community. However, substrate type also affected the colonization by F. capucina, O. sancta, P. catenata, and L. truncicola more than the epiphytic algal seasonality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albay M, Akcaalan R. 2003. Comparative study of periphyton colonisation on common reed (Phragmites australis) and artificial substrate in a shallow lake, Manyas, Turkey. Hydrobiologia, 506(1): 531–540.

    Article  Google Scholar 

  • Antoine S E, Benson-Evans K. 1985. The epipelic algal flora of the River Wye System, Wales, UK 1. Productivity and total biomass dynamics. Internationale Revue der gesamten. Hydrobiologie und Hydrographie, 70(4): 575–589.

    Google Scholar 

  • Barinova S S, Anissimova O V, Nevo E, Jarygin M M, Wasser S P. 2004. Diversity and ecology of algae from the Nahal Qishon river, northern Israel. Plant Biosystems. 138(3): 245–259.

    Article  Google Scholar 

  • Biggs B J F, Goring D G, Nikora V I. 1998. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. Journal of Phycology, 34: 598–607.

    Article  Google Scholar 

  • Blindow I. 1987. The composition and density of epiphyton on several species of submerged macrophytes-the neutral substrate hypothesis tested. Aquatic Botany, 29(2): 157–168.

    Article  Google Scholar 

  • Bobat A. 2004. Zebra mussel and fouling problems in the Euphrates basin. Turkish Journal of Zoology, 28: 161–177.

    Google Scholar 

  • Borchardt M A. 1996. Nutrients. In: Stevenson R J, Bothwell M L, Lowe R L eds. Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego. p.183–227.

    Chapter  Google Scholar 

  • Cattaneo A, Kalff J. 1978. Seasonal changes in the epiphyte community of natural and artificial macrophytes in Lake Memphremagog (Que. and Vt.). Hydrobiologia, 60(2): 135–144.

    Article  Google Scholar 

  • Claps M C. 1991. Diatom communities on aquatic macrophytes of pampasic lotic environments (Argentina). Acta Hydrobiologica, 33: 195–208.

    Google Scholar 

  • Comte K, Fayolle S, Roux M. 2005. Quantitative and qualitative variability of epiphytic algae on one Apiaceae (Apium nodiflorum L.) in a karstic river (Southeast of France). Hydrobiologia, 543(1): 37–53.

    Article  Google Scholar 

  • de Emiliani M O G. 1993. Seasonal succession of phytoplankton in a lake of the Paraná River floodplain, Argentina. Hydrobiologia, 264(2): 101–114.

    Article  Google Scholar 

  • Dunn A E, Dobberfuhl D R, Casamatta D A. 2008. A survey of algal Epiphytes from Vallisneria americana Michx. (Hydrocharitaceae) in the lower St. Johns River, Florida. Southeastern Naturalist, 7(2): 229–244.

    Article  Google Scholar 

  • Elber F, Schanz F. 1990. Algae, other than diatoms, affecting density, species richness and diversity of diatom communities in rivers. Archiv für Hydrobiologie, 119: 1–14.

    Google Scholar 

  • Eminson D, Moss B. 1980. The composition and ecology of periphyton communities in freshwaters. British Phycological Journal, 15(4): 429–446.

    Article  Google Scholar 

  • Fahmy T. 2013. XLSTAT, Version 2013. Addinsoft, Paris.

    Google Scholar 

  • Fonseca I A, Rodrigues L. 2007. Periphytic Cyanobacteria in different environments from the upper Paraná River floodplain, Brazil. Acta Limnol. Bras., 19(1): 53–65.

    Google Scholar 

  • Goldsborough L G, Robinson G C. 1996. Patterns in wetlands. In: Stevenson R J, Bothwell M L, Lowe R L eds. Algal Ecology: Freshwater Benthic Ecosystems. Academic, London. p.78–117.

    Google Scholar 

  • Gottlieb A, Richards J, Gaiser E. 2005. Effects of desiccation duration on the community structure and nutrient retention of short and long-hydroperiod Everglades periphyton mats. Aquatic Botany, 82: 99–112.

    Article  Google Scholar 

  • Gross E M, Feldbaum C, Graf A. 2003. Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiologia, 506–509: 559–565.

    Article  Google Scholar 

  • Guiry M D, Guiry G M. 2013. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed on 22 July 2013.

    Google Scholar 

  • Hasler P, Poulickova A. 2010. Diversity, taxonomy and autecology of autochtonous epipelic cyanobacteria of the genus Komvophoron (Borziaceae, Oscillatoriales): a study on populations from the Czech Republic and British Isles. Biologia, 65(1): 7–16.

    Article  Google Scholar 

  • Havens K E, East T L, Meeker R H, Davis W P, Steinman A D. 1996. Phytoplankton and periphyton responses to in situ experimental nutrient enrichment in a shallow subtropical lake. Journal of Plankton Research, 18(4): 551–566.

    Article  Google Scholar 

  • Hill W. 1996. Effects of light. In: Stevenson R J, Bothwell M L, Lowe R L eds. Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego. p.121–148.

    Chapter  Google Scholar 

  • Huber-Pestalozzi G. 1941. Das Phytoplankton des Süßwassers. (Die Binnengewässer, Band XVI). Teil 2. (i) Chrysophyceen, Farblose Flagellaten Heterokonten. E. Schweizerbart’sche Verlag-sbuchhandlung, Stuttgart.

    Google Scholar 

  • Huber-Pestalozzi G. 1950. 3 Teil. Cryoptophyceen,, Chloromonadien, Peridineen. In: Thienemann A ed. Das Phytoplankton des Süsswassers. Die Binnengewasser, E. Schweizerbart’sche Verlagsbuchhhandlung, Stuttgart.

    Google Scholar 

  • Huber-Pestalozzi G. 1961. Das Phytoplankton des Süßwassers. (Die Binnengewässer, Band XVI). Teil 5. Chlorophyceae, Ordnung: Volvocales. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • Huber-Pestalozzi G. 1962. Das phytoplankton des süsswassers systematik und biologie, 1. Teil, Blaualgen. E. Schweizerbarth’sche Verlagsbuchhandlung (Nagele u. Obermiller), Stuttgart.

    Google Scholar 

  • Huber-Pestalozzi G. 1969. Das phytoplankton des süsswassers systematik und biologie, 4. Teil, Euglenophycean. E. Schweizerbarth’sche Verlagsbuchhandlung (Nagele u. Obermiller) Stuttgart.

    Google Scholar 

  • Huber-Pestalozzi G. 1982. Das phytoplankton des süsswassers systematik und biologie, 8. Teil, 1.Halffe Conjugatophyceae Zygnematales und Desmidiales (excl. Zygnemataceae). E. Schweizerbarth’sche Verlagsbuchhandlung (Nagele u. Obermiller), Stuttgart.

    Google Scholar 

  • Huber-Pestalozzi G. 1983. Das phytoplankton des süsswassers systematik und biologie, 7. Teil, 1. Halffe Chlorophyceae (Grünalgen) Ordnung: Chlorococcales. E. Schweizerbarth’sche Verlagsbuchhandlung (Nagele u. Obermiller), Stuttgart.

    Google Scholar 

  • Irvine R L, Jackson L J. 2006. Spatial variance of nutrient limitation of periphyton in montane, headwater streams (McLeod River, Alberta, Canada). Aquatic Ecology, 40: 337–348.

    Article  Google Scholar 

  • John D M, Whitto B A, Brook A J. 2003. The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. The Natural History Museum and the British Phycological Society, Cambridge University Press, Cambridge.

    Google Scholar 

  • Junk W J, Bayley P B, Sparks R. 1989. The flood pulse concept in river-floodplain systems. In: Podge J P ed. Proceedings of the International Large River Sympsoium. Canadians Special Publication of Fisheries and Aquatic Sciences, Ohawa. p.110–127.

    Google Scholar 

  • Kawecka B, Eloranta P. 1994. Zarys ekologii glonow wodsłodkich i środowisk ldowych (Outline of the ecology of freshwater and terrestrial algae). PWN, Warszawa. Kıvrak E. 2006. Seasonal and long term changes of the phytoplankton in the Lake Tortum in relation to environmental factors, Erzurum, Turkey. Biologia, 61: 339–345.

    Google Scholar 

  • Komarek J, Anagnostidis K. 2008. Cyanoprokaryota, 2. Teil/Part 2: Oscillatoriales, Süswasser Flora von Mitteleuropa (Freshwater Flora of Central Europe).

    Google Scholar 

  • Krammer K, Lange-Bertalot H. 1986. Bacillariophyceae: Naviculaceae. In: Ettl H, Gerloff I, Heynıg H, Mollenhauer D eds. Süsswasserflora Von Mitteleuropa. Stuttgart: G. Fischer.

  • Krammer K, Lange-Bertalot H. 1991a. Bacillariophyceae. 3. Centrales, Fragilariaceae, Eunoticeae. In: Süβwasserflora von Mitteleuropa, 2/3, Gustav Fischer Verlag, Stuttgart, New York. 577p.

    Google Scholar 

  • Krammer K, Lange-Bertalot H. 1991b. Bacillariophyceae. 4. Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis. In: Süβwasserflora von Mitteleuropa, 2/4, Gustav Fischer Verlag, Stuttgart, New York. 437p.

    Google Scholar 

  • Krammer K, Lange-Bertalot H. 1999. Bacillariophyceae. 2. Epithemiaceae, Surirellaceae. In: Süβwasserflora von Mitteleuropa, 2/2, Gustav Fischer Verlag, Stuttgart, New York. 596p.

    Google Scholar 

  • McCormick P V, Shuford R B E, John G. Backus J G, Kennedy W C. 1998. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, U.S.A. Hydrobiologia, 362(1–3): 185–210.

    Google Scholar 

  • Messyasz B, Kuczy’nska-Kippen N, Nagengast B. 2009. The epiphytic communities of various ecological types of aquatic vegetation of five pastoral ponds. Biologia, 64(1): 88–96.

    Article  Google Scholar 

  • Millie D F, Lowe R L. 1983. Studies on Lake Erie’s littoral algae; Host specificity and temporal periodicity of epiphytic diatoms. Hydrobiologia, 99: 7–18.

    Article  Google Scholar 

  • Mosisch T D, Bunn S E, Davies P M, Marshall C J. 1999. Effects of shade and nutrient manipulation on periphyton growth in a subtropical stream. Aquatic Botany, 64(2): 167–177.

    Article  Google Scholar 

  • Najafpour S, Alkarkhi A F M, Kadir M O A, Najafpour G D. 2008. Evaluation of spatial and temporal variation in river water quality. Int. J. Environ. Res., 2(4): 349–358.

    Google Scholar 

  • Padisák J, Crossetti L O, Naselli-Flores L. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621(1): 1–19.

    Article  Google Scholar 

  • Pomazkina G, Kravtsova L, Sorokovikova E. 2012. Structure of epiphyton communities on Lake Baikal submerged macrophytes. Limnological Review, 12(1): 19–27.

    Google Scholar 

  • Rodríguez P, Tell G, Pizarro H. 2011. Epiphytic algal biodiversity in humic shallow lakes from the Lower Paraná River Basin (Argentina). Wetlands, 31(1): 53–63.

    Article  Google Scholar 

  • Rott E, Pfister P. 1988. Natural epilithic algal communities in fast-flowing mountain streams and rivers and some maninduced changes. Verhandlungen Internationale Vereinigung fur Theoretische und angewandte Limonologie, 23: 1 320–1 324.

    Google Scholar 

  • Round F E, Crawford R M, Mann D G. 1990. The Diatoms: Morphology and Biology of the Genera. Cambridge Universty Press, Cambridge.

    Google Scholar 

  • Round F E. 1953. An investigation of two benthic algal communities in Malharm Tarn, Yorkshire. Journal of Ecology, 41: 97–174.

    Article  Google Scholar 

  • Schallenberg M, Burns C. 2004. Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment. Freshwater Biology, 49: 143–159.

    Article  Google Scholar 

  • Schramm H L, Jirka K J. 1989. Epiphytic invertebrates as a food resource for bluegills in Florida lakes. Transactions of the American Fishery Society, 118: 416–426.

    Article  Google Scholar 

  • Shannon C E, Weaver W. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana. p.210–360.

    Google Scholar 

  • Sims P A. 1996. An Atlas of British Diatoms. Biopress Ltd., London. p.601.

    Google Scholar 

  • State Meteorological Works. 2013. Official Statistics (Statistical data belongs to provinces and districts). Bulletin of Meteorology. Department of Water Affairs and Forestry.

    Google Scholar 

  • Strickland J D H, Parsons T R. 1972. A Practical Handbook of Seawater Analysis, 2nd Edition. Bull. Fish. Res. Bd Can. p.167.

    Google Scholar 

  • Technicon Industrial Methods. 1977a. Nitrate and Nitrite in Water and Wastewater. No. 158-71, W/A.

    Google Scholar 

  • Technicon Industrial Methods. 1977b. Phosphate and Silicate Analysis in Water and Seawater. No. 253-280 E. Application note, U.K. p.5–7.

    Google Scholar 

  • Ter Braak C J F, Smilauer P. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canoinical Community Ordination (Version 4.5). Ithaca (NY, USA): Microcomputer Power. p.500.

    Google Scholar 

  • Triest L, Lung’ayia H, Ndiritu G, Beyene A. 2012. Epilithic diatoms as indicators in tropical African rivers (Lake Victoria catchment). Hydrobiologia, 695: 343–360.

    Article  Google Scholar 

  • Tuchman M, Blinn D W. 1979. Comparison of attached algal communities on natural and artificial substrata along a thermal gradient. British Phycological Journal, 14(3): 243–254.

    Article  Google Scholar 

  • Ustaoğlu B. 2012. Spatiotemporal analysis of land cover change patterns in western part of the Sakarya River Delta and its surroundings in Turkey. Enery Education Science and Tecnology Part A: Energy Science and Research, 29: 721–730.

    Google Scholar 

  • Utermöhl H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilung Internationale Vereinigung fuer Theoretische und Amgewandte. Limnologie, 9: 1–38.

    Google Scholar 

  • Uzun A, Tabur M A, Ayvaz Y. 2008. Birds of lake acarlar and environmental problems. Ekoloji, 17: 1–14.

    Article  Google Scholar 

  • van Donk E, van de Bund W J. 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Bot., 72: 261–274.

    Article  Google Scholar 

  • Van Landingham S L. 1982. Guide to the identification, environmental requirments and pollution tolerance of freshwater blue-green algae (Cyanophyta). US Environmental Protection Agency Environmental Monitoring Series 600/3-83-072.

    Google Scholar 

  • Watson S B, McCauley E, Downing J A. 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol. Oceanogr., 42: 486–495.

    Google Scholar 

  • Wium-Andersen S, Anthoni U, Christophersen C. 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales ). Oikos, 39: 187–190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Tunca.

Additional information

Supported by the Sakarya University Research Foundation (No. 2012-02-20-012)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunca, H., Ongun Sevindik, T., Bal, D.N. et al. Community structure of epiphytic algae on three different macrophytes at Acarlar floodplain forest (northern Turkey). Chin. J. Ocean. Limnol. 32, 845–857 (2014). https://doi.org/10.1007/s00343-014-3205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-3205-4

Keyword

Navigation