Skip to main content

Advertisement

Log in

A morphometric study of variance in articulated dendritic phytolith wave lobes within selected species of Triticeae and Aveneae

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Morphometric analysis has proven to be an effective tool for distinguishing among phytolith assemblages produced by closely related plant taxa. Elongate dendritic epidermal phytoliths are produced in the inflorescence bracts of many cereal species. Under light microscopy, these articulated dendritic phytoliths produce wave patterns between the margins of the cells that are reported to have taxonomic significance. In this study we explore morphometric variance among the lobes of the wave patterns formed by the articulated dendritic phytoliths within selected species of cereals as a first step towards understanding the variance between species. We found that there is often significant variance in dendritic wave lobes among different accessions of a species, among the different types of inflorescence bracts of the species (glumes, lemmas and paleae), and among each bract type’s location on the inflorescence (upper, middle and lower third of inflorescence spike or panicle). We observed that shape morphometries are typically more reliable and require a smaller sample size for statistical confidence than size morphometries. We further observed that adequate samples sizes for analysis of several shape morphometries of articulated dendritic wave lobes are considerably smaller than those reported to be required for analysis of the same morphometries of individual or isolated dendritic phytoliths. To gain a preliminary sense whether there is potential for discriminating between taxa in light of the significant variance within species, we compared our data to archaeological material from the historical center of Brussels. We demonstrate that while there is considerable variance in the morphometries among accessions, bract types and inflorescence locations within each species, there may yet be potential for discriminating between cereal species in archaeological samples by the morphometries of their dendritic phytolith wave lobes. We present one possible paradigm for conducting such analysis on archaeological material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Albert RM, Shahack-Gross R, Cabanes D, Gilboa A, Lev-Yadun S, Portillo M, Sharon I, Boaretto E, Weiner S (2008) Phytolith-rich layers from the Late Bronze and Iron Ages at Tel Dor (Israel): mode of formation and archaeological significance. J Archaeol Sci 35:57–75

    Article  Google Scholar 

  • Ball TB, Brotherson JD (1992) The effect of varying environmental conditions on phytolith morphology in two species of grass (Bouteloua curtipendula and Panicum virgatum). Scan Electron Microsc 6:1,163–1,182

    Google Scholar 

  • Ball TB, Brotherson JD, Gardner JS (1993) A typologic and morphometric study of phytoliths from einkorn wheat (Triticum monococcum L.). Can J Bot 71:1,182–1,192

    Article  Google Scholar 

  • Ball TB, Gardner JS, Anderson N (1999) Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and T. aestivum) and barley (Hordeum vulgare and H. spontaneum). Am J Bot 86:1,615–1,623

    Article  Google Scholar 

  • Ball TB, Vrydaghs L, Van den Hauwe I, Manwaring J, De Langhe E (2006) Differentiating Banana Phytoliths: Wild and Edible Musa acuminata and Musa balbisiana. J Archaeol Sci 33:1,228–1,236

    Article  Google Scholar 

  • Ball TB, Davis A, Evett RR, Ladwig JL, Tromp M, Out WA, Portillo M (2015) Morphometric analysis of phytoliths: recommendations towards standardization from the International Committee for Phytolith Morphometrics. J Archaeol Sci. doi:10.1016/j.jas.2015.03.023

    Google Scholar 

  • Berlin A, Ball TB, Thompson R, Kittleson D, Herbert SC (2003) Ptolemaic agriculture, “Syrian wheat”, and Triticum aestivum. J Archaeol Sci 30:115–121

    Article  Google Scholar 

  • Cabanes D, Weiner S, Shahack-Gros R (2011) Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths. J Archaeol Sci 38:2,480–2490

    Article  Google Scholar 

  • Cotton JM, Hyland EG, Sheldon ND (2014) Multi-proxy evidence for tectonic control on the expansion of C-4 grasses in northwest Argentina. Earth Planet Sci Lett 395:41–50

    Article  Google Scholar 

  • Devos Y, Nicosia C, Vrydaghs L, Modrie S (2013) Studying urban stratigraphy: Dark Earth and a microstratified sequence on the site of the Court of Hoogstraeten (Brussels, Belgium). Integrating archaeopedology and phytolith analysis. Quat Int 315:147–166

    Article  Google Scholar 

  • Gillot C (2014) The use of pozzolanic materials in Maya mortars: new evidence from Rio Bec (Campeche, Mexico). J Archaeol Sci 47:1–9

    Article  Google Scholar 

  • Grund BS, Williams SE, Surovell TA (2014) Viable paleosol microorganisms, paleoclimatic reconstruction, and relative dating in archaeology: a test case from Hell Gap, Wyoming, USA. J Archaeol Sci 46:217–228

    Article  Google Scholar 

  • Harvey EL, Fuller DQ (2005) Investigating crop processing using phytolith analysis: the example of rice and millets. J Archaeol Sci 32:739–752

    Article  Google Scholar 

  • Helbaek H (1960) Cereals and weed grasses in Phase A. In: Braidwood RJ, Braidwood LS (eds) Excavation in the plain of Antioch I. University of Chicago Press, Chicago, pp 504–543

    Google Scholar 

  • Henry AG, Brooks AS, Piperno DR (2014) Plant foods and the dietary ecology of Neanderthals and early modern humans. J Hum Evol 69:44–54

    Article  Google Scholar 

  • Jenkins E (2009) Phytolith taphonomy: a comparison of dry ashing and acid extraction on the breakdown of conjoined phytoliths formed in Triticum durum. J Archaeol Sci 36:2,402

    Article  Google Scholar 

  • Jones LHP, Handreck KA (1967) Silica in soils plants and animals. Adv Agron 19:107–149

    Article  Google Scholar 

  • Liu L, Kealhofer L, Chen X, Ji P (2014) A broad-spectrum subsistence economy in Neolithic Inner Mongolia, China: evidence from grinding stones. Holocene 24:726–742

    Article  Google Scholar 

  • Madella M, Lancelotti C (2012) Taphonomy and phytoliths: a user manual. Quat Int 275:76–83

    Article  Google Scholar 

  • Madella M, Jones MK, Echlin P, Powers-Jones AH, Moore M (2009) Plant water availability and analytical microscopy of phytoliths: implications for ancient irrigation in arid zones. Quat Int 193:32–40

    Article  Google Scholar 

  • Out WA, Madella M (2015) Towards improved detection and identification of crop by-products: morphometric analysis of bilobate leaf phytoliths of Pennisetum glaucum and Sorghum bicolor. Quat Int. doi:10.1016/j.quaint.2015.07.017

    Google Scholar 

  • Pearsall DM, Piperno DR, Dinan EH, Umlauf M, Zhao Z, Benefer RA (1995) Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis: results of preliminary research. Econ Bot 49:183–196

    Article  Google Scholar 

  • Pető Á, Gyulai F, Pópity D, Kenéz Á (2013) Macro- and micro-archaeobotanical study of a vessel content from a Late Neolithic structured deposition from southeastern Hungary. J Archaeol Sci 40:58–71

    Article  Google Scholar 

  • Pető Á, Kenéz Á, Prunner AC, Lisztes-Szabo Z (2015) Activity area analysis of a Roman period semi-subterranean building by means of integrated archaeobotanical and geoarchaeological data. Veget Hist Archaeobot 24:101–124

    Article  Google Scholar 

  • Phillips C, Lancelotti C (2014) Chimpanzee diet: phytolithic analysis of feces. Am J Primatol 76:757–773

    Article  Google Scholar 

  • Portillo M, Ball TB, Manwaring J (2006) Morphometric analysis of inflorescence phytoliths produced by Avena sativa L. and Avena strigosa schreb. Econ Bot 60:121–129

    Article  Google Scholar 

  • Power RC, Rosen AM, Nadel D (2014) The economic and ritual utilization of plants at the Raqefet Cave Natufian site: the evidence from phytoliths. J Anthropol Archaeol 33:49–65

    Article  Google Scholar 

  • Qiu Z, Jiang H, Ding J, Yaowu H, Shang X (2014) Pollen and phytolith evidence for rice cultivation and vegetation change during the Mid-Late Holocene at the Jiangli site, Suzhou, East China. PLoS ONE 9:e86,816

    Article  Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev Camb Philos Soc 58:179–207

    Article  Google Scholar 

  • Rosen AM (1992a) Preliminary identification of silica skeletons from Near Eastern archaeological sites: an anatomical approach. In: Rapp G, Mulholland SC (eds) Phytolith systematics. Plenum Press, New York, pp 129–147

    Chapter  Google Scholar 

  • Rosen AM (1992b) Phytoliths as indicators of ancient irrigation farming. In: Anderson-Gerfaud P (ed) Préhistoire l’Agriculture: Nouvelles Approches Expérentales et Ethnographiques. CRNS, Paris, pp 1–7

    Google Scholar 

  • Sangster AG (1970) Intracellular silica deposition in immature leaves in three species of the Gramineae. Ann Bot 34:245–257

    Google Scholar 

  • Schultz PHR, Harris S, Clemett SJ, Thomas-Keprta KL, Zarate M (2014) Preserved flora and organics in impact melt breccias. Geol 42:515–518

    Article  Google Scholar 

  • Shahack-Gross R, Boaretto E, Cabanes D, Katz O, Finkelstein I (2014) Subsistence economy in the Negev Highlands: the Iron Age and the Byzantine/Early Islamic period. Levant 46:98–117

    Article  Google Scholar 

  • Shillito LM (2011a) Taphonomic observations of archaeological wheat phytoliths from Neolithic Çatalhöyük, Turkey, and the use of conjoined phytolith size as an indicator of water availability. Archaeometry 53:631–641

    Article  Google Scholar 

  • Shillito LM (2011b) Simultaneous thin section and phytolith observations of finely stratified deposits from Neolithic Çatalhöyük, Turkey: implications for paleoeconomy and Early Holocene paleoenvironment. J Quat Sci 26:576–588

    Article  Google Scholar 

  • Tromp M, Dudgeon JV (2015) Differentiating dietary and non-dietary microfossils extracted from human dental calculus: the importance of sweet potato to ancient diet on Rapa Nui. J Archaeol Sci 54:54–63

    Article  Google Scholar 

  • Tubb HJ, Hodson MJ, Hodson GC (1993) The inflorescence papillae of the Triticeae: a new tool for taxonomic and archaeological research. Ann Bot 72:537–545

    Article  Google Scholar 

  • Twiss PC, Suess E, Smith RM (1969) Morphological classification of grass phytoliths. Soil Sci Soc Am Proc 33:109–115

    Article  Google Scholar 

  • Umemura M, Takenaka C (2014) Biological cycle of silicon in moso bamboo (Phyllostachys pubescens) forests in central Japan. Ecol Res 29:501–510

    Article  Google Scholar 

  • Veena MP, Achyuthan H, Eastoe C, Farooquic A (2014) A multi-proxy reconstruction of monsoon variability in the late Holocene, South India. Quat Int 325:63–73

    Article  Google Scholar 

  • Vrydaghs L (2014) Extension Toone, Bruxelles (BR 229). Convention DMS-ARC/CREA-Pat/C-2013-250 entre la Région et le Centre de recherches en archéologie et patrimoine de l’ULB relative aux études paléoenvironnementales. Analyse des modèles de distribution et morphotypologie des phytolithes de l’US 23 du site Extension de Toone (BR 229)

  • Vrydaghs L, Ball TB, Volkaert H, Van den Houwe I, Manwaring J, De Langhe E (2009) Differentiating the volcaniform phytoliths of bananas: Musa acuminate. Ethnobot Res Appl 7:239–246

    Article  Google Scholar 

  • Vrydaghs L, Ball TB, Devos Y (2015) Beyond redundancy and multiplicity. J Archaeol Sci, Integrating phytolith analysis and micromorphology to study the Brussels Dark Earth. doi:10.1016/j.jas.2015.09.004

    Google Scholar 

  • Wallis NJ, Cordell AS, Deagan KA, Sullivan MJ (2014) Inter-ethnic social interactions in 16th century La Florida: sourcing pottery using siliceous microfossils. J Archaeol Sci 43:127–140

    Article  Google Scholar 

  • Zhang J, Lu H, Wu N, Yang X, Diao X (2011) Phytolith analysis for differentiating between foxtail millet (Setaria italica) and green foxtail (Setaria viridis). PLoS One 6:e19726

    Article  Google Scholar 

  • Zhao Z, Pearsall DM, Benefer AB, Piperno DR (1998) Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis, II: finalized method. Econ Bot 52:134–135

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the Brussels Capital Region for financing the archaeological research which prompted the present research, the Royal Belgian Institute for Natural Sciences (RBINS) which provided laboratory facilities as well as reference material, and the Research Centre for Agrobiodiversity (Tápiószele, Hungary) for providing the Triticum monococcum samples for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Ball.

Additional information

Communicated by K. Neumann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ball, T., Vrydaghs, L., Mercer, T. et al. A morphometric study of variance in articulated dendritic phytolith wave lobes within selected species of Triticeae and Aveneae. Veget Hist Archaeobot 26, 85–97 (2017). https://doi.org/10.1007/s00334-015-0551-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-015-0551-x

Keywords

Navigation