Skip to main content
Log in

Seasonal progression of diatom assemblages in surface waters of Ryder Bay, Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Phytoplankton assemblages from seasonally sea-ice covered Ryder Bay (Adelaide Island, Antarctica) were studied over three austral summers (2004–2007), to link sea-ice variability and environmental conditions with algal speciation. Typical of near-shore Antarctic waters, biomass was dominated by large diatoms, although the prymnesiophyte Phaeocystis antarctica was numerically dominant. Although there was considerable interannual variability between main diatom species, high biomass of certain species or species groups corresponded consistently to certain phases of seasonal progression. We present the first documentation of an extensive bloom of the late-season diatom Proboscia inermis in February 2006, accounting for over 90% of diatom biomass. At this time, water column stratification and nutrient drawdown were high relative to other periods of the study, although carbon export was relatively low. Melt water flux in this region promotes well-stratified surface waters and high chlorophyll levels, but not necessarily concurrent increases in export production relative to seasons with lower freshwater inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arrigo KR, Thomas DN (2004) Large scale importance of sea ice biology in the Southern Ocean. Antarct Sci 16:471–486

    Article  Google Scholar 

  • Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367

    Article  CAS  PubMed  Google Scholar 

  • Bianchi F, Boldrin A, Cioce F, Dieckmann G, Kuosa H, Larsson AM, Nothig EM, Sehlstedt PI, Socal G, Syvertsen EE (1992) Phytoplankton distribution in relation to sea ice, hydrography and nutrients in the Northwestern Weddell Sea in Early Spring 1988 during Epos. Polar Biol 12:225–235

    Article  Google Scholar 

  • Blazewicz-Paszkowycz M, Ligowski R (2002) Diatoms as food source indicator for some Antarctic Cumacea and Tanaidacea (Crustacea). Antarct Sci 14:11–15

    Article  Google Scholar 

  • Brichta M, Nothig EM (2003) Proboscia Inermis: a key diatom species in Antarctic Autumn. AGU Chapman Conference: the role of diatom production and Si flux and Burial in the regulation of global cycles. Paros, Greece

  • Brockington S, Clarke A (2001) The relative influence of temperature and food on the metabolism of a marine invertebrate. J Exp Marine Biol Ecol 258:87–99

    Article  Google Scholar 

  • Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA, Smith RC (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos Trans Royal Soc B Biol Sci 362:149–166

    Article  Google Scholar 

  • Clarke A, Meredith MP, Wallace MI, Brandon MA, Thomas DN (2008) Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep Sea Res II 55:1988–2006

    Article  Google Scholar 

  • Crosta X, Crespin J, Billy I, Ther O (2005) Major factors controlling Holocene delta C-13(org) changes in a seasonal sea-ice environment, Adelie Land, East Antarctica. Glob Biogeochem Cycles 19. doi:10.1029/2004GB002426

  • Denis D, Crosta X, Zaragosi S, Romero O, Martin B, Mas V (2006) Seasonal and subseasonal climate changes recorded in laminated diatom ooze sediments, Adelie Land, East Antarctica. Holocene 16:1137–1147

    Article  Google Scholar 

  • Doucette GJ, Fryxell GA (1985) Thalassiosira antarctica (Bacillariophyceae): vegetative and resting stage ultrastructure of an ice-related marine diatom. Polar Biol 4:107–112

    Article  Google Scholar 

  • Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystems: the West Antarctic Peninsula. Philos Trans Royal Soc B-Biol Sci 362:67–94

    Article  Google Scholar 

  • Edler L (1979) Recommendations for marine biological studies in the Baltic Sea: phytoplankton and chlorophyll. Balt Marine Biol Publ 5

  • Eppley RW, Reid FMH, Strickland JDH (1970) The ecology of the plankton off La Jolla, California, in the period April through September, 1967. III. Estimates of phytoplankton crop, size, growth rate and primary production. Bull Scripps Inst Oceanogr 17:33–42

    Google Scholar 

  • Estrada M, Delgado M (1990) Summer phytoplankton distributions in the Weddell Sea. Polar Biol 10:441–449

    Article  Google Scholar 

  • Fiala M, Kopczynska EE, Jeandel C, Oriol L, Vetion G (1998) Seasonal and interannual variability of size-fractionated phytoplankton biomass and community structure at station Kerfix, off the Kerguelen Islands, Antarctica. J Plankton Res 20:1341–1356

    Article  Google Scholar 

  • Froneman PW, Pakhomov EA, Laubscher RK (1997) Microphytoplankton assemblages in the waters surrounding South Georgia, Antarctica during austral summer 1994. Polar Biol 17:515–522

    Article  Google Scholar 

  • Garibotti IA, Vernet M, Ferrario ME, Smith RC, Ross RM, Quetin LB (2003a) Phytoplankton spatial distribution patterns along the western Antarctic Peninsula (Southern Ocean). Marine Ecol Prog Ser 261:21–39

    Article  Google Scholar 

  • Garibotti IA, Vernet M, Kozlowski WA, Ferrario ME (2003b) Composition and biomass of phytoplankton assemblages in coastal Antarctic waters: a comparison of chemotaxonomic and microscopic analyses. Marine Ecol Prog Ser 247:27–42

    Article  CAS  Google Scholar 

  • Garibotti IA, Vernet M, Ferrario ME (2005) Annually recurrent phytoplanktonic assemblages during summer in the seasonal ice zone west of the Antarctic Peninsula (Southern Ocean). Deep Sea Res I 52:1823–1841

    Article  Google Scholar 

  • Garrison DL, Buck KR (1986) Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biol 6:237–239

    Article  Google Scholar 

  • Garrison DL, Buck KR, Fryxell GA (1987) Algal assemblages in Antarctic Pack Ice and in ice-edge plankton. J Phycol 23:564–572

    Google Scholar 

  • Gersonde R, Zielinski U (2000) The reconstruction of late Quaternary Antarctic sea-ice distribution—the use of diatoms as a proxy for sea-ice. Palaeogeogr Palaeoclimatol Palaeoecol 162:263–286

    Article  Google Scholar 

  • Gomi Y, Umeda H, Fukuchi M, Taniguchi A (2005) Diatom assemblages in the surface water of the Indian Sector of the Antarctic Surface Water in summer of 1999/2000. Polar Biosci 18:1–15

    Google Scholar 

  • Grossi SM, Sullivan CW (1985) Sea ice microbial communities. 5. The vertical zonation of diatoms in an Antarctic Fast Ice Community. J Phycol 21:401–409

    Google Scholar 

  • Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res Atmospheres 104:30997–31022

    Article  Google Scholar 

  • Hart TJ (1942) Phytoplankton periodicity in Antarctic waters. Discovery Rep 21:261–365

    Google Scholar 

  • Hasle GR (1978) Using the inverted-microscope method. In: Sournia A (ed) Monographs on oceanographic methodology 6 Phytoplankton manual. UNESCO, Paris, pp 191–196

    Google Scholar 

  • Hasle GR, Syvertsen EE (1997) Marine diatoms. In: Tomas CR (ed) Identifying marine phytoplankton. Academic Press, New York, pp 5–385

    Chapter  Google Scholar 

  • Hillebrand H, Durselen C-D, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic macroalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Hofmann EE, Klink JM, Lascara CM, Smith DA (1996) Water mass distribution and circulation west of the Antarctic Peninsula and including Bransfield Strait. In: Ross RM (ed) Foundations for Ecological Research West of the Antarctic Peninsula, Antarctic Research Series, vol 70. American Geophysical Union, Washington, DC, pp 61–80

    Google Scholar 

  • Holm-Hansen O, Mitchell BG (1991) Spatial and temporal distribution of phytoplankton and primary production in the western Bransfield Strait region. Deep Sea Res 38:961–980

    Article  CAS  Google Scholar 

  • Holm-Hansen O, Mitchell BG, Hewes CD, Karl DM (1989) Phytoplankton Blooms in the Vicinity of Palmer Station, Antarctica. Polar Biol 10:49–57

    Article  Google Scholar 

  • Horner RA (1985) Ecology of sea ice microalgae. In: Horner RA (ed) Sea ice biota. CRC Press, Florida, pp 83–103

    Google Scholar 

  • Johansen JR, Fryxell GA (1985) The genus Thalassiosira (Bacillariophyceae): studies on species occurring south of the Antarctic Convergence Zone. Phycologia 24:155–179

    Google Scholar 

  • Jordan RW, Ligowski R, Nothig EM, Priddle J (1991) The diatom genus Proboscia in Antarctic Waters. Diatom Res 6:63–78

    Google Scholar 

  • Kang SH, Fryxell GA (1993) Phytoplankton in the Weddell Sea, Antarctica—composition, abundance and distribution in water-column assemblages of the marginal ice-edge zone during Austral Autumn. Marine Biol 116:335–348

    Article  Google Scholar 

  • Kang SH, Lee SH (1995) Antarctic phytoplankton assemblage in the western Bransfield Strait region, February 1993: composition, biomass, and mesoscale distributions. Marine Ecol Prog Ser 129:253–267

    Article  Google Scholar 

  • Kang SH, Kang JS, Lee S, Chung KH, Kim D, Park MG (2001) Antarctic phytoplankton assemblages in the marginal ice zone of the northwestern Weddell Sea. J Plankton Res 23:333–352

    Article  CAS  Google Scholar 

  • Kang JS, Kang SH, Kim D, Kim D-Y (2003) Planktonic centric diatom Minidiscus chilensis dominated sediment trap material in eastern Bransfield Strait, Antarctica. Marine Ecol Prog Ser 255:93–99

    Article  Google Scholar 

  • Kemp AES, Pike J, Pearce RB, Lange CB (2000) The “Fall dump”—a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux. Deep Sea Res II 47:2129–2154

    Article  Google Scholar 

  • Konno S, Jordan RW (2007) An amended terminology for the Parmales (Chrysophyceae). Phycologia 46:612–616

    Article  Google Scholar 

  • Kopczynska E (1992) Dominance of Microflagellates over Diatoms in the Antarctic Areas of Deep Vertical Mixing and Krill Concentrations. J Plankton Res 14:1031–1054

    Article  Google Scholar 

  • Laws RA (1983) Preparing strewn slides for quantitative microscopical analysis: a test using calibrated microspheres. Micropaleontology 24:60–65

    Article  Google Scholar 

  • Leventer A, Dunbar RB (1996) Factors influencing the distribution of diatoms and other algae in the Ross Sea. J Geophys Res Oceans 101:18489–18500

    Article  CAS  Google Scholar 

  • Ligowski R, Godlewski M, Lukowski A (1992) Sea ice diatoms and ice edge planktonic diatoms at the northern limit of the Weddell Sea pack ice. Proc NIPR Symp Polar Biol 5:9–20

    Google Scholar 

  • Maddison EJ, Pike J, Leventer A, Dunbar R, Brachfeld S, Domack EW, Manley P, McClennen C (2006) Post-glacial seasonal diatom record of the Mertz Glacier Polynya, East Antarctica. Mar Micropaleontol 60:66–88

    Article  Google Scholar 

  • Margalef R (1958) Modern orientations in hydrobiology. Scientia 93:41–46

    Google Scholar 

  • McMinn A, Scott FJ (2005) Dinoflagellates. In: Scott FJ, Marchant H (eds) Antarctic marine protists. Australian Biological Resources Study, Canberra, pp 202–250

    Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32. doi:10.1029/2005GL024042

  • Meredith MP, Renfrew IA, Clarke A, King JC, Brandon MA (2004) Impact of the 1997/98 ENSO on upper ocean characteristics in Marguerite Bay, western Antarctic Peninsula. J Geophys Res-Oceans 109. doi:10.1029/2003JC001784

  • Meredith MP, Brandon MA, Wallace MI, Clarke A, Leng MJ, Renfrew IA, van Lipzig NPM, King JC (2008) Variability in the freshwater balance of northern Marguerite Bay, Antarctic Peninsula: Results from d[18]O. Deep Sea Res II 55:309–322

    Article  Google Scholar 

  • Mitchell BG, Holm-Hansen O (1991) Bio-optical properties of Antarctic Peninsula waters: differentiation from temperate ocean models. Deep Sea Res 38:1009–1028

    Article  Google Scholar 

  • Moline MA, Prezelin BB (1996) Long-term monitoring and analyses of physical factors regulating variability in coastal Antarctic phytoplankton biomass, in situ productivity and taxonomic composition over subseasonal, seasonal and interannual time scales. Marine Ecol Prog Ser 145:143–160

    Article  Google Scholar 

  • Olguin HF, Boltovskoy D, Lange CB, Brandini F (2006) Distribution of spring phytoplankton (mainly diatoms) in the upper 50 m of the Southwestern Atlantic Ocean (30–61 degrees S). J Plankton Res 28:1107–1128

    Article  Google Scholar 

  • Palmisano AC, Garrison DL (1993) Microorganisms in Antarctic sea ice. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 167–218

    Google Scholar 

  • Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct Ecol 18:625–630

    Article  Google Scholar 

  • Peters E, Thomas DN (1996) Prolonged darkness and diatom mortality. 1. Marine Antarctic species. J Exp Marine Biol Ecol 207:25–41

    Article  Google Scholar 

  • Pike J, Allen CS, Leventer A, Stickley CE, Pudsey CJ (2008) Comparison of contemporary and fossil diatom assemblages from the western Antarctic Peninsula shelf. Marine Micropaleontol 67:274–287

    Article  Google Scholar 

  • Priddle J, Heywood RB, Theriot E (1986) Some environmental-factors influencing phytoplankton in the Southern-Ocean around South Georgia. Polar Biol 5:65–79

    Article  Google Scholar 

  • Rathburn AE, Pichon JJ, Ayress MA, DeDeckker P (1997) Microfossil and stable-isotope evidence for changes in Late Holocene palaeoproductivity and palaeoceanographic conditions in the Prydz Bay region of Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 131:485–510

    Article  Google Scholar 

  • Riaux-Gobin C, Poulin M, Prodon R, Tregilier P (2003) Land-fast ice microalgal and phytoplanktonic communities (Adelie Land, Antarctica) in relation to environmental factors during ice break-up. Antarct Sci 15:353–364

    Article  Google Scholar 

  • Roberts D, Craven M, Cai MH, Allison I, Nash G (2007) Protists in the marine ice of the Amery Ice Shelf, East Antarctica. Polar Biol 30:143–153

    Article  Google Scholar 

  • Romero OE, Hebbeln D, Wefer G (2001) Temporal and spatial variability in export production in the SE Pacific Ocean: evidence from siliceous plankton fluxes and surface sediment assemblages. Deep Sea Res I 48:2673–2697

    Article  Google Scholar 

  • Rousseau V, Mathot S, Lancelot C (1990) Calculating carbon biomass of Phaeocystis sp. from microscopic observations. Marine Biol 107:305–314

    Article  Google Scholar 

  • Sakshaug E, Holmhansen O (1986) Photoadaptation in Antarctic Phytoplankton—variations in growth-rate, chemical-composition and P-curve versus I-curve. J Plankton Res 8:459–473

    Article  Google Scholar 

  • Scott FJ, Thomas DP (2005) Diatoms. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian Biological Resources Study, Canberra, pp 13–201

    Google Scholar 

  • Smayda TJ (1978) From phytoplankters to biomass. In: Sournia A (ed) Monographs on oceanographic methodology 6 Phytoplankton manual. UNESCO, Paris, pp 273–279

    Google Scholar 

  • Smetacek V, Scharek R, Gordon LI, Eicken H, Fahrbach E, Rohardt G, Moore S (1992) Early Spring Phytoplankton Blooms in Ice Platelet Layers of the Southern Weddell Sea, Antarctica. Deep Sea Res I 39:153–168

    Article  CAS  Google Scholar 

  • Smith WO Jr, Sakshaug E (1990) Polar Phytoplankton. In: Smith WO Jr (ed) Polar oceanography part B chemistry, biology and geology. Academic Press, New York, pp 477–525

    Google Scholar 

  • Smith RC, Stammerjohn SE (2001) Variations of surface air temperature and sea-ice extent in the western Antarctic Peninsula region. Ann Glaciol 33:493–500

    Article  Google Scholar 

  • Smith WO Jr, Nelson DM, DiTullio GR, Leventer A (1996) Temporal and spatial patterns in the Ross Sea: Phytoplankton biomass, elemental composition, productivity and growth rates. J Geophys Res 101:18455–18465

    Article  CAS  Google Scholar 

  • Smith RC, Baker KS, Vernet M (1998) Seasonal and interannual variability of phytoplankton biomass west of the Antarctic Peninsula. J Mar Syst 17:229–243

    Article  Google Scholar 

  • Smith DA, Hofmann EE, Klink JM, Lascara CM (1999) Hydrography and circulation of the West Antarctic Peninsula Continental Shelf. Deep Sea Res I 46:925–949

    Article  Google Scholar 

  • Smith WO Jr, Marra J, Hiscock MR, Barber RT (2000) The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep Sea Res II 47:3119–3140

    Article  CAS  Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Iannuzzi RA (2008a) Sea ice in the western Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res II 55:2041–2058

    Article  Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008b) Trends in Antarctic annual sea ice retreat and advance and their relation to El Nino-Southern Oscillation and Southern Annular Mode variability. J Geophys Res Oceans 113. doi: 10.1029/2007JC004269

  • Stickley CE, Pike J, Leventer A, Dunbar R, Domack EW, Brachfeld S, Manley P, McClennan C (2005) Deglacial ocean and climate seasonality in laminated diatom sediments, Mac.Robertson Shelf, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 227:290–310

    Article  Google Scholar 

  • Strathmann RR (1967) Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol Oceanogr 12:411–418

    Article  CAS  Google Scholar 

  • Theriot E, Fryxell GA (1985) Multivariate statistical analysis of net diatom species distributions in the Southwestern Atlantic and Indian Ocean. Polar Biol 5:23–30

    Article  Google Scholar 

  • Torinesi O, Fily M, Genthon C (2003) Interannual variability and trend of the Antarctic Ice Sheet Summer Melting Period from 20 Years of Spaceborne Microwave Data. J Clim 16:1047–1060

    Article  Google Scholar 

  • Varela M, Fernandez E, Serret P (2002) Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995–1996. Deep Sea Res II 49:749–768

    Article  CAS  Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Chang 60:243–274

    Article  Google Scholar 

  • Whitehouse MJ, Symon C, Priddle J (1993) Variations in the distribution of chlorophyll-a and inorganic nutrients around South-Georgia, South-Atlantic. Antarct Sci 5:367–376

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by NERC Antarctic Funding Initiative 4-02 and the Commonwealth Scholarship and Fellowship Program. The authors would like to thank the Bonner Laboratory marine science team at Rothera Research Station (2004–2007), and Nicola Cayzer for assistance with SEM analysis. Constructive comments were provided by Claire Allen and an anonymous reviewer to improve and clarify the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber L. Annett.

Appendix I

Appendix I

See Table 3.

Table 3 Mean values of linear measurements (µm), surface area (SA; µm2), biovolume (V; µm3), surface area to volume ratio (SA:V; µm2 µm−3) and carbon biomass (pg C cell−1) of phytoplankton species observed in this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annett, A.L., Carson, D.S., Crosta, X. et al. Seasonal progression of diatom assemblages in surface waters of Ryder Bay, Antarctica. Polar Biol 33, 13–29 (2010). https://doi.org/10.1007/s00300-009-0681-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0681-7

Keywords

Navigation