Skip to main content

Advertisement

Log in

Roles for major histocompatibility complex glycosylation in immune function

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The major histocompatibility complex (MHC) glycoprotein family, also referred to as human leukocyte antigens, present endogenous and exogenous antigens to T lymphocytes for recognition and response. These molecules play a central role in enabling the immune system to distinguish self from non-self, which is the basis for protective immunity against pathogenic infections and disease while at the same time representing a serious obstacle for tissue transplantation. All known MHC family members, like the majority of secreted, cell surface, and other immune-related molecules, carry asparagine (N)-linked glycans. The immune system has evolved increasing complexity in higher-order organisms along with a more complex pattern of protein glycosylation, a relationship that may contribute to immune function beyond the early protein quality control events in the endoplasmic reticulum that are commonly known. The broad MHC family maintains peptide sequence motifs for glycosylation at sites that are highly conserved across evolution, suggesting importance, yet functional roles for these glycans remain largely elusive. In this review, we will summarize what is known about MHC glycosylation and provide new insight for additional functional roles for this glycoprotein modification in mediating immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumánovics A, Takada T, Lindahl KF (2003) Genomic organization of the mammalian MHC. Annu Rev Immunol 21:629–657

    Article  PubMed  CAS  Google Scholar 

  2. Koller BH, Marrack P, Kappler JW, Smithies O (1990) Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. Science 248(4960):1227–1230

    Article  PubMed  CAS  Google Scholar 

  3. Madsen L, Labrecque N, Engberg J, Dierich A, Svejgaard A, Benoist C et al (1999) Mice lacking all conventional MHC class II genes. Proc Natl Acad Sci U S A 96(18):10338–10343

    Article  PubMed  CAS  Google Scholar 

  4. Marth JD, Grewal PK (2008) Mammalian glycosylation in immunity. Nat Rev Immunol 8(11):874–887

    Article  PubMed  CAS  Google Scholar 

  5. Rodgers JR, Cook RG (2005) MHC class Ib molecules bridge innate and acquired immunity. Nat Rev Immunol 5(6):459–471

    Article  PubMed  CAS  Google Scholar 

  6. Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22(1):817–890

    Article  PubMed  CAS  Google Scholar 

  7. Schachter H (2010) Mgat1-dependent N-glycans are essential for the normal development of both vertebrate and invertebrate metazoans. Semin Cell Dev Biol 21(6):609–615

    Article  PubMed  CAS  Google Scholar 

  8. Lowe JB, Marth JD (2003) A genetic approach to mammalian glycan function. Annu Rev Biochem 72:643–691

    Article  PubMed  CAS  Google Scholar 

  9. Bergeron JJ, Zapun A, Ou WJ, Hemming R, Parlati F, Cameron PH et al (1998) The role of the lectin calnexin in conformation independent binding to N-linked glycoproteins and quality control. Adv Exp Med Biol 435:105–116

    Article  PubMed  CAS  Google Scholar 

  10. Saito Y, Ihara Y, Leach MR, Cohen-Doyle MF, Williams DB (1999) Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J 18(23):6718–6729

    Article  PubMed  CAS  Google Scholar 

  11. Solá RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98(4):1223–1245

    Article  PubMed  CAS  Google Scholar 

  12. Grigorian A, Torossian S, Demetriou M (2009) T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunol Rev 230(1):232–246

    Article  PubMed  CAS  Google Scholar 

  13. Rudd PM, Wormald MR, Stanfield RL, Huang M, Mattsson N, Speir JA et al (1999) Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J Mol Biol 293(2):351–366

    Article  PubMed  CAS  Google Scholar 

  14. Barbosa JA, Santos-Aguado J, Mentzer SJ, Strominger JL, Burakoff SJ, Biro PA (1987) Site-directed mutagenesis of class I HLA genes. Role of glycosylation in surface expression and functional recognition. J Exp Med 166(5):1329–1350

    Article  PubMed  CAS  Google Scholar 

  15. Yamamoto K (2009) Intracellular lectins involved in folding and transport in the endoplasmic reticulum. Biol Pharm Bull 32(5):767–773

    Article  PubMed  CAS  Google Scholar 

  16. Brennan AJ, Chia J, Browne KA, Ciccone A, Ellis S, Lopez JA et al (2011) Protection from endogenous perforin: glycans and the C terminus regulate exocytic trafficking in cytotoxic lymphocytes. Immunity 34(6):879–892

    Article  PubMed  CAS  Google Scholar 

  17. Elliott EA, Drake JR, Amigorena S, Elsemore J, Webster P, Mellman I et al (1994) The invariant chain is required for intracellular transport and function of major histocompatibility complex class II molecules. J Exp Med 179(2):681–694

    Article  PubMed  CAS  Google Scholar 

  18. Germain RN, Rinker AG (1993) Peptide binding inhibits protein aggregation of invariant-chain free class II dimers and promotes surface expression of occupied molecules. Nature 363(6431):725–728

    Article  PubMed  CAS  Google Scholar 

  19. Hart GW (1982) The role of asparagine-linked oligosaccharides in cellular recognition by thymic lymphocytes. Effects of tunicamycin on the mixed lymphocyte reaction. J Biol Chem 257(1):151–158

    PubMed  CAS  Google Scholar 

  20. Sevilla LM, Comstock SS, Swier K, Miller J (2004) Endoplasmic reticulum-associated degradation-induced dissociation of class II invariant chain complexes containing a glycosylation-deficient form of p41. J Immunol 173(4):2586–2593

    PubMed  CAS  Google Scholar 

  21. Bakke O, Dobberstein B (1990) MHC class II-associated invariant chain contains a sorting signal for endosomal compartments. Cell 63(4):707–716

    Article  PubMed  CAS  Google Scholar 

  22. Vagin O, Kraut JA, Sachs G (2009) Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am J Physiol Renal Physiol 296(3):F459–F469

    Article  PubMed  CAS  Google Scholar 

  23. Bakke O, Nordeng TW (1999) Intracellular traffic to compartments for MHC class II peptide loading: signals for endosomal and polarized sorting. Immunol Rev 172(1):171–187

    Article  PubMed  CAS  Google Scholar 

  24. Imperiali B, O’Connor SE (1999) Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr Opin Chem Biol 3(6):643–649

    Article  PubMed  CAS  Google Scholar 

  25. Shental-Bechor D, Levy Y (2008) Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc Natl Acad Sci U S A 105(24):8256–8261

    Article  PubMed  CAS  Google Scholar 

  26. Neumann J, Schach N, Koch N (2001) Glycosylation signals that separate the trimerization from the MHC class II-binding domain control intracellular degradation of invariant chain. J Biol Chem 276(16):13469–13475

    Article  PubMed  CAS  Google Scholar 

  27. Roche PA, Cresswell P (1991) Proteolysis of the class II-associated invariant chain generates a peptide binding site in intracellular HLA-DR molecules. Proc Natl Acad Sci U S A 88(8):3150–3154

    Article  PubMed  CAS  Google Scholar 

  28. Rabinovich GA, Toscano MA (2009) Turning ‘sweet’ on immunity: galectin–glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 9(5):338–352

    Article  PubMed  CAS  Google Scholar 

  29. Garner OB, Baum LG (2008) Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 36(Pt 6):1472–1477

    Article  PubMed  CAS  Google Scholar 

  30. Cullen SE, Kindle CS, Shreffler DC, Cowing C (1981) Differential glycosylation of murine B cell and spleen adherent cell Ia antigens. J Immunol 127(4):1478–1484

    PubMed  CAS  Google Scholar 

  31. Barrera C, Espejo R, Reyes VE (2002) Differential glycosylation of MHC class II molecules on gastric epithelial cells: implications in local immune responses. Hum Immunol 63(5):384–393

    Article  PubMed  CAS  Google Scholar 

  32. Trombetta ES, Helenius A (1998) Lectins as chaperones in glycoprotein folding. Curr Opin Struct Biol 8(5):587–592

    Article  PubMed  CAS  Google Scholar 

  33. Ryan SO, Bonomo JA, Zhao F, Cobb BA (2011) MHCII glycosylation modulates Bacteroides fragilis carbohydrate antigen presentation. J Exp Med 208(5):1041–1053

    Article  PubMed  CAS  Google Scholar 

  34. Mandal TK, Mukhopadhyay C (2001) Effect of glycosylation on structure and dynamics of MHC class I glycoprotein: a molecular dynamics study. Biopolymers 59(1):11–23

    Article  PubMed  CAS  Google Scholar 

  35. An HJ, Froehlich JW, Lebrilla CB (2009) Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Curr Opin Chem Biol 13(4):421–426

    Article  PubMed  CAS  Google Scholar 

  36. Barber LD, Patel TP, Percival L, Gumperz JE, Lanier LL, Phillips JH et al (1996) Unusual uniformity of the N-linked oligosaccharides of HLA-A, -B, and -C glycoproteins. J Immunol 156(9):3275–3284

    PubMed  CAS  Google Scholar 

  37. Wagner DD, Ivatt R, Destree AT, Hynes RO (1981) Similarities and differences between the fibronectins of normal and transformed hamster cells. J Biol Chem 256(22):11708–11715

    PubMed  CAS  Google Scholar 

  38. Goochee CF, Monica T (1990) Environmental effects on protein glycosylation. Nat Biotechnol 8(5):421–427

    Article  CAS  Google Scholar 

  39. Swiedler SJ, Freed JH, Tarentino AL, Plummer TH Jr, Hart GW (1985) Oligosaccharide microheterogeneity of the murine major histocompatibility antigens. Reproducible site-specific patterns of sialylation and branching in asparagine-linked oligosaccharides. J Biol Chem 260(7):4046–4054

    PubMed  CAS  Google Scholar 

  40. Hayes BK, Esquivel F, Bennink JR, Yewdell JW, Varki A (1995) Structure of the N-linked oligosaccharides of MHC class I molecules from cells deficient in the antigenic peptide transporter. Implications for the site of peptide association. J Immunol 155(8):3780–3787

    PubMed  CAS  Google Scholar 

  41. Le AV, Doyle D (1982) Differential regulation of mouse H-2 alloantigens. Biochemistry 21(23):5730–5738

    Article  PubMed  CAS  Google Scholar 

  42. Parham P (1996) Functions for MHC class I carbohydrates inside and outside the cell. Trends Biochem Sci 21(11):427–433

    Article  PubMed  CAS  Google Scholar 

  43. Baba E, Erskine R, Boyson JE, Cohen GB, Davis DM, Malik P et al (2000) N-linked carbohydrate on human leukocyte antigen-C and recognition by natural killer cell inhibitory receptors. Hum Immunol 61(12):1202–1218

    Article  PubMed  CAS  Google Scholar 

  44. Parham P (2000) NK cell receptors: of missing sugar and missing self. Curr Biol 10(5):R195–R197

    Article  PubMed  CAS  Google Scholar 

  45. Abi-Rached L, Parham P (2005) Natural selection drives recurrent formation of activating killer cell immunoglobulin-like receptor and Ly49 from inhibitory homologues. J Exp Med 201(8):1319–1332

    Article  PubMed  CAS  Google Scholar 

  46. Guseva NV, Fullenkamp CA, Naumann PW, Shey MR, Ballas ZK, Houtman JC et al (2010) Glycosylation contributes to variability in expression of murine cytomegalovirus m157 and enhances stability of interaction with the NK-cell receptor Ly49H. Eur J Immunol 40(9):2618–2631

    Article  PubMed  CAS  Google Scholar 

  47. Ahmed KA, Munegowda MA, Xie Y, Xiang J (2008) Intercellular trogocytosis plays an important role in modulation of immune responses. Cell Mol Immunol 5(4):261–269

    Article  PubMed  CAS  Google Scholar 

  48. Caumartin J, LeMaoult J, Carosella ED (2006) Intercellular exchanges of membrane patches (trogocytosis) highlight the next level of immune plasticity. Transpl Immunol 17(1):20–22

    Article  PubMed  CAS  Google Scholar 

  49. Wingren C, Crowley MP, Degano M, Chien Yh, Wilson IA (2000) Crystal structure of a gammadelta T cell receptor ligand T22: a truncated MHC-like fold. Science 287(5451):310–314

    Article  PubMed  CAS  Google Scholar 

  50. McMaster M, Zhou Y, Shorter S, Kapasi K, Geraghty D, Lim KH et al (1998) HLA-G isoforms produced by placental cytotrophoblasts and found in amniotic fluid are due to unusual glycosylation. J Immunol 160(12):5922–5928

    PubMed  CAS  Google Scholar 

  51. van Hall T, Oliveira CC, Joosten SA, Ottenhoff THM (2010) The other Janus face of Qa-1 and HLA-E: diverse peptide repertoires in times of stress. Microbes Infect 12(12–13):910–918

    Article  PubMed  CAS  Google Scholar 

  52. Comiskey M, Goldstein CY, De Fazio SR, Mammolenti M, Newmark JA, Warner CM (2003) Evidence that HLA-G is the functional homolog of mouse Qa-2, the ped gene product. Hum Immunol 64(11):999–1004

    Article  PubMed  CAS  Google Scholar 

  53. Donadi EA, Castelli EC, Arnaiz-Villena A, Roger M, Rey D, Moreau P (2011) Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell Mol Life Sci 68(3):369–395

    Article  PubMed  CAS  Google Scholar 

  54. Riteau B, Rouas-Freiss N, Menier C, Paul P, Dausset J, Carosella ED (2001) HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J Immunol 166(8):5018–5026

    PubMed  CAS  Google Scholar 

  55. Lee N, Ishitani A, Geraghty DE (2010) HLA-F is a surface marker on activated lymphocytes. Eur J Immunol 40(8):2308–2318

    Article  PubMed  CAS  Google Scholar 

  56. Kim HS, Garcia J, Exley M, Johnson KW, Balk SP, Blumberg RS (1999) Biochemical characterization of CD1d expression in the absence of b2-microglobulin. J Biol Chem 274(14):9289–9295

    Article  PubMed  CAS  Google Scholar 

  57. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A et al (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13(4):399–408

    Article  PubMed  CAS  Google Scholar 

  58. Ehrlich R, Lemonnier FA (2000) HFE—a novel nonclassical class I molecule that is involved in iron metabolism. Immunity 13(5):585–588

    Article  PubMed  CAS  Google Scholar 

  59. Bennett MJ, Lebron JA, Bjorkman PJ (2000) Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature 403(6765):46–53

    Article  PubMed  CAS  Google Scholar 

  60. Bhatt L, Murphy C, O’Driscoll LS, Carmo-Fonseca M, McCaffrey MW, Fleming JV (2010) N-Glycosylation is important for the correct intracellular localization of HFE and its ability to decrease cell surface transferrin binding. FEBS J 277(15):3219–3234

    Article  PubMed  CAS  Google Scholar 

  61. Kang SJ, Cresswell P (2002) Calnexin, calreticulin, and ERp57 cooperate in disulfide bond formation in human CD1d heavy chain. J Biol Chem 277(47):44838–44844

    Article  PubMed  CAS  Google Scholar 

  62. De Silva AD, Park JJ, Matsuki N, Stanic AK, Brutkiewicz RR, Medof ME et al (2002) Lipid protein interactions: the assembly of CD1d1 with cellular phospholipids occurs in the endoplasmic reticulum. J Immunol 168(2):723–733

    PubMed  Google Scholar 

  63. Zhu Y, Zhang W, Veerapen N, Besra G, Cresswell P (2010) Calreticulin controls the rate of assembly of CD1d molecules in the endoplasmic reticulum. J Biol Chem 285(49):38283–38292

    Article  PubMed  CAS  Google Scholar 

  64. Paduraru C, Spiridon L, Yuan W, Bricard G, Valencia X, Porcelli SA et al (2006) An N-linked glycan modulates the interaction between the CD1d heavy chain and b2-microglobulin. J Biol Chem 281(52):40369–40378

    Article  PubMed  CAS  Google Scholar 

  65. Sriram V, Willard CA, Liu J, Brutkiewicz RR (2008) Importance of N-linked glycosylation in the functional expression of murine CD1d1. Immunology 123(2):272–281

    PubMed  CAS  Google Scholar 

  66. Karadimitris A, Gadola S, Altamirano M, Brown D, Woolfson A, Klenerman P et al (2001) Human CD1d-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc Natl Acad Sci U S A 98(6):3294–3298

    Article  PubMed  CAS  Google Scholar 

  67. Salomonsen J, Marston D, Avila D, Bumstead N, Johansson B, Juul-Madsen H et al (2003) The properties of the single chicken MHC classical class II a chain (B-LA) gene indicate an ancient origin for the DR/E-like isotype of class II molecules. Immunogenetics 55(9):605–614

    Article  PubMed  CAS  Google Scholar 

  68. Ishikawa S, Kowal C, Cole B, Thomson C, Diamond B (1995) Replacement of N-glycosylation sites on the MHC class II E alpha chain. Effect on thymic selection and peripheral T cell activation. J Immunol 154(10):5023–5029

    PubMed  CAS  Google Scholar 

  69. Elliott WL, Stille CJ, Thomas LJ, Humphreys RE (1987) An hypothesis on the binding of an amphipathic, alpha helical sequence in Ii to the desetope of class II antigens. J Immunol 138(9):2949–2952

    PubMed  CAS  Google Scholar 

  70. Roche PA, Cresswell P (1990) Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding. Nature 345(6276):615–618

    Article  PubMed  CAS  Google Scholar 

  71. Gorga JC, Horejsí V, Johnson DR, Raghupathy R, Strominger JL (1987) Purification and characterization of class II histocompatibility antigens from a homozygous human B cell line. J Biol Chem 262(33):16087–16094

    PubMed  CAS  Google Scholar 

  72. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL et al (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364(6432):33–39

    Article  PubMed  CAS  Google Scholar 

  73. Wei BY, Buerstedde JM, Bell M, Chase C, Nilson A, Browne A et al (1991) Functional effects of N-linked oligosaccharides located on the external domain of murine class II molecules. J Immunol 146(7):2358–2366

    PubMed  CAS  Google Scholar 

  74. Nag B, Passmore D, Kendrick T, Bhayani H, Sharma SD (1992) N-linked oligosaccharides of murine major histocompatibility complex class II molecule. Role in antigenic peptide binding, T cell recognition, and clonal nonresponsiveness. J Biol Chem 267(31):22624–22629

    PubMed  CAS  Google Scholar 

  75. Nag B, Wada HG, Arimilli S, Fok K, Passmore D, Sharma SD et al (1994) The role of N-linked oligosaccharides of MHC class II antigens in T cell stimulation. J Immunol Methods 172(1):95–104

    Article  PubMed  CAS  Google Scholar 

  76. Fukuta K, Abe R, Yokomatsu T, Kono N, Nagatomi Y, Asanagi M et al (2000) Comparative study of the N-glycans of human monoclonal immunoglobulins M produced by hybridoma and parental cells. Arch Biochem Biophys 378(1):142–150

    Article  PubMed  CAS  Google Scholar 

  77. Ilic V, Milosevic-Jovcic N, Petrovic S, Markovic D, Stefanovic G, Ristic T (2008) Glycosylation of IgG B cell receptor (IgG BCR) in multiple myeloma: relationship between sialylation and the signal activity of IgG BCR. Glycoconj J 25(4):383–392

    Article  PubMed  CAS  Google Scholar 

  78. Li M, Song L, Qin X (2010) Glycan changes: cancer metastasis and anti-cancer vaccines. J Biosci 34(4):665–673

    Article  CAS  Google Scholar 

  79. Lis H, Sharon N (1993) Protein glycosylation. Structural and functional aspects. Eur J Biochem 218(1):1–27

    Article  PubMed  CAS  Google Scholar 

  80. Ragupathi G, Coltart DM, Williams LJ, Koide F, Kagan E, Allen J et al (2002) On the power of chemical synthesis: immunological evaluation of models for multiantigenic carbohydrate-based cancer vaccines. Proc Natl Acad Sci U S A 99(21):13699–13704

    Article  PubMed  CAS  Google Scholar 

  81. Ryan SO, Turner MS, Gariépy J, Finn OJ (2010) Tumor antigen epitopes interpreted by the immune system as self or abnormal-self differentially affect cancer vaccine responses. Cancer Res 70(14):5788–5796

    Article  PubMed  CAS  Google Scholar 

  82. Brooks CL, Schietinger A, Borisova SN, Kufer P, Okon M, Hirama T et al (2010) Antibody recognition of a unique tumor-specific glycopeptide antigen. Proc Natl Acad Sci U S A 107(22):10056–10061

    Article  PubMed  CAS  Google Scholar 

  83. Romagnoli P, Germain RN (1994) The CLIP region of invariant chain plays a critical role in regulating major histocompatibility complex class II folding, transport, and peptide occupancy. J Exp Med 180(3):1107–1113

    Article  PubMed  CAS  Google Scholar 

  84. Neumann J, Koch N (2006) A novel domain on HLA-DRb chain regulates the chaperone role of the invariant chain. J Cell Sci 119(20):4207–4214

    Article  PubMed  CAS  Google Scholar 

  85. Dennis JW, Lau KS, Demetriou M, Nabi IR (2009) Adaptive regulation at the cell surface by N-glycosylation. Traffic 10(11):1569–1578

    Article  PubMed  CAS  Google Scholar 

  86. Cobb BA, Kasper DL (2008) Characteristics of carbohydrate antigen binding to the presentation protein HLA-DR. Glycobiology 18(9):707–718

    Article  PubMed  CAS  Google Scholar 

  87. Velez CD, Lewis CJ, Kasper DL, Cobb BA (2009) Type I Streptococcus pneumoniae carbohydrate utilizes a nitric oxide and MHC II-dependent pathway for antigen presentation. Immunology 127(1):73–82

    Article  PubMed  CAS  Google Scholar 

  88. Cobb BA, Wang Q, Tzianabos AO, Kasper DL (2004) Polysaccharide processing and presentation by the MHCII pathway. Cell 117(5):677–687

    Article  PubMed  CAS  Google Scholar 

  89. Choi YH, Roehrl MH, Kasper DL, Wang JY (2002) A unique structural pattern shared by T-cell-activating and abscess-regulating zwitterionic polysaccharides. Biochemistry 41(51):15144–15151

    Article  PubMed  CAS  Google Scholar 

  90. Wang Y, Kalka-Moll WM, Roehrl MH, Kasper DL (2000) Structural basis of the abscess-modulating polysaccharide A2 from Bacteroides fragilis. Proc Natl Acad Sci U S A 97(25):13478–13483

    Article  PubMed  CAS  Google Scholar 

  91. Kreisman LS, Friedman JH, Neaga A, Cobb BA (2007) Structure and function relations with a T-cell-activating polysaccharide antigen using circular dichroism. Glycobiology 17(1):46–55

    Article  PubMed  CAS  Google Scholar 

  92. Zhang Y, Larsen CA, Stadler HS, Ames JB (2011) Structural basis for sequence specific DNA binding and protein dimerization of HOXA13. PLoS One 6(8):e23069

    Article  PubMed  CAS  Google Scholar 

  93. Rudd PM, Morgan BP, Wormald MR, Harvey DJ, Van Den Berg CW, Davis SJ et al (1997) The glycosylation of the complement regulatory protein, human erythrocyte CD59. J Biol Chem 272(11):7229–7244

    Article  PubMed  CAS  Google Scholar 

  94. Krieger J, Jenis DM, Chesnut RW, Grey HM (1988) Studies on the capacity of intact cells and purified Ia from different B cell sources to function in antigen presentation to T cells. J Immunol 140(2):388–394

    PubMed  CAS  Google Scholar 

  95. Neel D, Merlu B, Turpin E, Rabourdin-Combe C, Mach B, Goussault Y et al (1987) Characterization of N-linked oligosaccharides of an HLA-DR molecule expressed in different cell lines. Biochem J 244(2):433–442

    PubMed  CAS  Google Scholar 

  96. Balk SP, Burke S, Polischuk JE, Frantz ME, Yang L, Porcelli S et al (1994) Beta 2-microglobulin-independent MHC class Ib molecule expressed by human intestinal epithelium. Science 265(5169):259–262

    Article  PubMed  CAS  Google Scholar 

  97. Amano M, Baumgarth N, Dick MD, Brossay L, Kronenberg M, Herzenberg LA et al (1998) CD1 expression defines subsets of follicular and marginal zone B cells in the spleen: b2-microglobulin-dependent and independent forms. J Immunol 161(4):1710–1717

    PubMed  CAS  Google Scholar 

  98. Cardell S, Tangri S, Chan S, Kronenberg M, Benoist C, Mathis D (1995) CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med 182(4):993–1004

    Article  PubMed  CAS  Google Scholar 

  99. Murakami M, Paul WE (1998) Age-dependent appearance of NK1.1+ T cells in the livers of b2-microglobulin knockout and SJL mice. J Immunol 160(6):2649–2654

    PubMed  CAS  Google Scholar 

  100. Koh YI, Kim HY, Meyer EH, Pichavant M, Akbari O, Yasumi T et al (2008) Activation of nonclassical CD1d-restricted NK T cells induces airway hyperreactivity in b2-microglobulin-deficient mice. J Immunol 181(7):4560–4569

    PubMed  CAS  Google Scholar 

  101. Arnold JN, Saldova R, Hamid UM, Rudd PM (2008) Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics 8(16):3284–3294

    Article  PubMed  CAS  Google Scholar 

  102. Tardif KD, Siddiqui A (2003) Cell surface expression of major histocompatibility complex class I molecules is reduced in hepatitis C virus subgenomic replicon-expressing cells. J Virol 77(21):11644–11650

    Article  PubMed  CAS  Google Scholar 

  103. Hansen JJ, Holt L, Sartor RB (2009) Gene expression patterns in experimental colitis in IL-10-deficient mice. Inflamm Bowel Dis 15(6):890–899

    Article  PubMed  Google Scholar 

  104. Mayer L, Eisenhardt D, Salomon P, Bauer W, Plous R, Piccinini L (1991) Expression of class II molecules on intestinal epithelial cells in humans. Differences between normal and inflammatory bowel disease. Gastroenterology 100(1):3–12

    PubMed  CAS  Google Scholar 

  105. Lowe JB (2001) Glycosylation, immunity, and autoimmunity. Cell 104(6):809–812

    Article  PubMed  CAS  Google Scholar 

  106. Brown SJ, Miller AM, Cowan PJ, Slavin J, Connell WR, Moore GT et al (2004) Altered immune system glycosylation causes colitis in alpha1,2-fucosyltransferase transgenic mice. Inflamm Bowel Dis 10(5):546–556

    Article  PubMed  Google Scholar 

  107. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118

    Article  PubMed  CAS  Google Scholar 

  108. Kreisman LS, Cobb BA (2011) Glycoantigens induce human peripheral Tr1 cell differentiation with gut-homing specialization. J Biol Chem 286(11):8810–8818

    Article  PubMed  CAS  Google Scholar 

  109. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453(7195):620–625

    Article  PubMed  CAS  Google Scholar 

  110. Mkhikian H, Grigorian A, Li CF, Chen HL, Newton B, Zhou RW et al (2011) Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat Commun 2:334

    Article  PubMed  CAS  Google Scholar 

  111. Ye Z, Marth JD (2004) N-glycan branching requirement in neuronal and postnatal viability. Glycobiology 14(6):547–558

    Article  PubMed  CAS  Google Scholar 

  112. Lee SU, Grigorian A, Pawling J, Chen IJ, Gao G, Mozaffar T et al (2007) N-glycan processing deficiency promotes spontaneous inflammatory demyelination and neurodegeneration. J Biol Chem 282(46):33725–33734

    Article  PubMed  CAS  Google Scholar 

  113. McElroy JP, Oksenberg JR (2011) Multiple sclerosis genetics 2010. Neurol Clin 29(2):219–231

    Article  PubMed  Google Scholar 

  114. Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Begum-Haque S, Dasgupta S et al (2010) Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol 185(7):4101–4108

    Article  PubMed  CAS  Google Scholar 

  115. Ochoa-Reparaz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S, Kasper DL et al (2010) A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol 3(5):487–495

    Article  PubMed  CAS  Google Scholar 

  116. Jones J, Krag SS, Betenbaugh MJ (2005) Controlling N-linked glycan site occupancy. Biochim Biophys Acta 1726(2):121–137

    Article  PubMed  CAS  Google Scholar 

  117. Tissot B, North SJ, Ceroni A, Pang PC, Panico M, Rosati F et al (2009) Glycoproteomics: past, present and future. FEBS Lett 583(11):1728–1735

    Article  PubMed  CAS  Google Scholar 

  118. Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15(3):351–362

    Article  PubMed  CAS  Google Scholar 

  119. Madden DR (1995) The three-dimensional structure of peptide–MHC complexes. Annu Rev Immunol 13:587–622

    Article  PubMed  CAS  Google Scholar 

  120. Demetriou M, Granovsky M, Quaggin S, Dennis JW (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409(6821):733–739

    Article  PubMed  CAS  Google Scholar 

  121. Bax M, García-Vallejo JJ, Jang-Lee J, North SJ, Gilmartin TJ, Hernández G et al (2007) Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J Immunol 179(12):8216–8224

    PubMed  CAS  Google Scholar 

  122. Smith KJ, Pyrdol J, Gauthier L, Wiley DC, Wucherpfennig KW (1998) Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein. J Exp Med 188(8):1511–1520

    Article  PubMed  CAS  Google Scholar 

  123. Woods Group (2011) GLYCAM web glycoprotein builder. http://glycam.ccrc.uga.edu/ccrc/gp/. Accessed 2 Aug 2011

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants OD004225 and GM082916 to B.A. Cobb.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Cobb.

Additional information

This article is published as part of the Special Issue on Glycosylation and Immunity [34:3]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, S.O., Cobb, B.A. Roles for major histocompatibility complex glycosylation in immune function. Semin Immunopathol 34, 425–441 (2012). https://doi.org/10.1007/s00281-012-0309-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-012-0309-9

Keywords

Navigation