Skip to main content

Advertisement

Log in

Elevated GALNT10 expression identifies immunosuppressive microenvironment and dismal prognosis of patients with high grade serous ovarian cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

High grade ovarian serous cancer (HGSC) is a malignant disease with high mortality. Glycosylation plays important roles in tumor invasion and immune evasion, but its effect on the immune microenvironment of HGSC remains unclear. This study examined the association of glycosyltransferase expression with HGSC prognosis and explored the underlying mechanism using clinical specimens and integrated bioinformatic analyses. We identified a cluster of 15 glycogenes associated with reduced overall survival, and GALNT10 was found to be an independent predictor of HGSC prognosis. The high GALNT10 expression was associated with increased regulatory CD4+ T cells infiltration and decreased granzyme B expression in CD8+ T cells. The expression of GALNT10 and its product, Tn antigen, in HGSC specimens was associated with the increased infiltration of M2 macrophages and neutrophils, and the decreased infiltration of CD3+ T cells, NK cells, and B cells. Taken collectively, high GALNT10 expression confers with immunosuppressive microenvironment to promote tumor progression and predicts poor clinical outcomes in HGSC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

ES:

Enrichment scores

GEO:

Gene expression Omnibus

GSEA:

Gene set enrichment analysis

GZMB:

Granzyme B

HGSC:

High grade serous ovarian cancer

HR:

Hazard ratio

MUC:

Mucin

ST:

Sialyl-T

sTn:

Sialyl Tn

TAM:

Tumor-associated macrophages

TCGA:

The cancer genome atlas

VVA:

Vicia villosa agglutinin

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  2. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL (2018) Ovarian cancer statistics, 2018. CA Cancer J Clin 68(4):284–296. https://doi.org/10.3322/caac.21456

    Article  PubMed  PubMed Central  Google Scholar 

  3. Labidi-Galy SI, Papp E, Hallberg D, Niknafs N, Adleff V, Noe M, Bhattacharya R, Novak M, Jones S, Phallen J, Hruban CA, Hirsch MS, Lin DI, Schwartz L, Maire CL, Tille JC, Bowden M, Ayhan A, Wood LD, Scharpf RB, Kurman R, Wang TL, Shih IM, Karchin R, Drapkin R, Velculescu VE (2017) High grade serous ovarian carcinomas originate in the fallopian tube. Nat Commun 8(1):1093. https://doi.org/10.1038/s41467-017-00962-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cancer Genome Atlas Research N (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615. https://doi.org/10.1038/nature10166

    Article  CAS  Google Scholar 

  5. Oliveira-Ferrer L, Legler K, Milde-Langosch K (2017) Role of protein glycosylation in cancer metastasis. Semin Cancer Biol 44:141–152. https://doi.org/10.1016/j.semcancer.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  6. Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15(9):540–555. https://doi.org/10.1038/nrc3982

    Article  CAS  PubMed  Google Scholar 

  7. Rao TD, Fernandez-Tejada A, Axelrod A, Rosales N, Yan X, Thapi S, Wang A, Park KJ, Nemieboka B, Xiang J, Lewis JS, Olvera N, Levine DA, Danishefsky SJ, Spriggs DR (2017) Antibodies against specific MUC16 glycosylation sites inhibit ovarian cancer growth. ACS Chem Biol 12(8):2085–2096. https://doi.org/10.1021/acschembio.7b00305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Javadi S, Ganeshan DM, Qayyum A, Iyer RB, Bhosale P (2016) Ovarian cancer, the revised FIGO staging system, and the role of imaging. AJR Am J Roentgenol 206(6):1351–1360. https://doi.org/10.2214/ajr.15.15199

    Article  PubMed  Google Scholar 

  9. Rodrigues JG, Balmana M, Macedo JA, Pocas J, Fernandes A, de Freitas JCM, Pinho SS, Gomes J, Magalhaes A, Gomes C, Mereiter S, Reis CA (2018) Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis. Cell Immunol. https://doi.org/10.1016/j.cellimm.2018.03.007

    Article  PubMed  Google Scholar 

  10. Hanson R, Hollingsworth M (2016) Functional consequences of differential O-glycosylation of MUC1, MUC4, and MUC16 (downstream effects on signaling). Biomolecules 6(3). https://doi.org/10.3390/biom6030034

    Article  PubMed Central  Google Scholar 

  11. Brockhausen I (2006) Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep 7(6):599–604. https://doi.org/10.1038/sj.embor.7400705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohyama C (2008) Glycosylation in bladder cancer. Int J Clin Oncol 13(4):308–313. https://doi.org/10.1007/s10147-008-0809-8

    Article  CAS  PubMed  Google Scholar 

  13. Langbecker D, Janda M (2015) Systematic review of interventions to improve the provision of information for adults with primary brain tumors and their caregivers. Front Oncol 5:1. https://doi.org/10.3389/fonc.2015.00001

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stowell SR, Ju T, Cummings RD (2015) Protein glycosylation in cancer. Annu Rev Pathol 10:473–510. https://doi.org/10.1146/annurev-pathol-012414-040438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Bennett EP, Mandel U, Brunak S, Wandall HH, Levery SB, Clausen H (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32(10):1478–1488. https://doi.org/10.1038/emboj.2013.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gomes J, Mereiter S, Magalhaes A, Reis CA (2017) Early GalNAc O-glycosylation: pushing the tumor boundaries. Cancer Cell 32(5):544–545. https://doi.org/10.1016/j.ccell.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  17. Cheng L, Tachibana K, Zhang Y, Guo J, Kahori Tachibana K, Kameyama A, Wang H, Hiruma T, Iwasaki H, Togayachi A, Kudo T, Narimatsu H (2002) Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T10. FEBS Lett 531(2):115–121

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Q, Burdette JE, Wang JP (2014) Integrative network analysis of TCGA data for ovarian cancer. BMC Syst Biol 8:1338. https://doi.org/10.1186/s12918-014-0136-9

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu Q, Yang L, Liu H, Zhang W, Le X, Xu J (2015) Elevated expression of N-acetylgalactosaminyltransferase 10 predicts poor survival and early recurrence of patients with clear-cell renal cell carcinoma. Ann Surg Oncol 22(7):2446–2453. https://doi.org/10.1245/s10434-014-4236-y

    Article  PubMed  Google Scholar 

  20. Sheta R, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Popa I, Bachvarov D (2017) Altered expression of different GalNActransferases is associated with disease progression and poor prognosis in women with high-grade serous ovarian cancer. Int J Oncol 51(6):1887–1897. https://doi.org/10.3892/ijo.2017.4147

    Article  CAS  PubMed  Google Scholar 

  21. Gaziel-Sovran A, Hernando E (2014) miRNA-mediated GALNT modulation of invasion and immune suppression. OncoImmunology 1(5):746–748. https://doi.org/10.4161/onci.19535

    Article  Google Scholar 

  22. Fucikova J, Rakova J, Hensler M, Kasikova L, Belicova L, Hladikova K, Truxova I, Skapa P, Laco J, Pecen L, Praznovec I, Halaska MJ, Brtnicky T, Kodet R, Fialova A, Pineau J, Gey A, Tartour E, Ryska A, Galluzzi L, Spisek R (2019) TIM-3 dictates functional orientation of the immune infiltrate in ovarian cancer. Clin Cancer Res. https://doi.org/10.1158/1078-0432.Ccr-18-4175

    Article  PubMed  Google Scholar 

  23. Catakovic K, Klieser E, Neureiter D, Geisberger R (2017) T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal CCS 15(1):1. https://doi.org/10.1186/s12964-016-0160-z

    Article  CAS  PubMed  Google Scholar 

  24. Gaziel-Sovran A, Segura MF, Di Micco R, Collins MK, Hanniford D, Vega-Saenz de Miera E, Rakus JF, Dankert JF, Shang S, Kerbel RS, Bhardwaj N, Shao Y, Darvishian F, Zavadil J, Erlebacher A, Mahal LK, Osman I, Hernando E (2011) miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell 20(1):104–118. https://doi.org/10.1016/j.ccr.2011.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu H, Chen J, Li D, Liu X, Li L, Wang K (2017) MicroRNA-30e functions as a tumor suppressor in cervical carcinoma cells through targeting GALNT7. Transl Oncol 10(6):876–885. https://doi.org/10.1016/j.tranon.2017.08.006

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huanna T, Tao Z, Xiangfei W, Longfei A, Yuanyuan X, Jianhua W, Cuifang Z, Manjing J, Wenjing C, Shaochuan Q, Feifei X, Naikang L, Jinchao Z, Chen W (2015) GALNT14 mediates tumor invasion and migration in breast cancer cell MCF-7. Mol Carcinog 54(10):1159–1171. https://doi.org/10.1002/mc.22186

    Article  CAS  PubMed  Google Scholar 

  27. Dahmani A, Delisle JS (2018) TGF-beta in T cell biology: implications for cancer immunotherapy. Cancers (Basel) 10 (6). https://doi.org/10.3390/cancers10060194

    Article  PubMed Central  Google Scholar 

  28. Whiteside TL (2018) FOXP3 + Treg as a therapeutic target for promoting anti-tumor immunity. Expert Opin Therap Targets 22(4):353–363. https://doi.org/10.1080/14728222.2018.1451514

    Article  CAS  Google Scholar 

  29. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61. https://doi.org/10.1016/j.immuni.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tariq M, Zhang J, Liang G, Ding L, He Q, Yang B (2017) Macrophage polarization: anti-cancer strategies to target tumor-associated macrophage in breast cancer. J Cell Biochem 118(9):2484–2501. https://doi.org/10.1002/jcb.25895

    Article  CAS  PubMed  Google Scholar 

  32. Hurt B, Schulick R, Edil B, El Kasmi KC, Barnett C Jr (2017) Cancer-promoting mechanisms of tumor-associated neutrophils. Am J Surg 214(5):938–944. https://doi.org/10.1016/j.amjsurg.2017.08.003

    Article  PubMed  Google Scholar 

  33. Sionov RV, Fridlender ZG, Granot Z (2015) The multifaceted roles neutrophils play in the tumor microenvironment. Cancer Microenviron 8(3):125–158. https://doi.org/10.1007/s12307-014-0147-5

    Article  CAS  PubMed  Google Scholar 

  34. Fu C, Zhao H, Wang Y, Cai H, Xiao Y, Zeng Y, Chen H (2016) Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. HLA 88(6):275–286. https://doi.org/10.1111/tan.12900

    Article  CAS  PubMed  Google Scholar 

  35. Schultz MJ, Swindall AF, Bellis SL (2012) Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 31(3–4):501–518. https://doi.org/10.1007/s10555-012-9359-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghattass K, El-Sitt S, Zibara K, Rayes S, Haddadin MJ, El-Sabban M, Gali-Muhtasib H (2014) The quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and in vivo by targeting the hypoxia inducible factor-1 pathway. Molecular Cancer 13:12. https://doi.org/10.1186/1476-4598-13-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vasudev NS, Trigonis I, Cairns DA, Hall GD, Jackson DP, Broadhead T, Buxton J, Hutson R, Nugent D, Perren TJ (2011) The prognostic and predictive value of CA-125 regression during neoadjuvant chemotherapy for advanced ovarian or primary peritoneal carcinoma. Arch Gynecol Obst 284(1):221–227. https://doi.org/10.1007/s00404-010-1655-2

    Article  CAS  Google Scholar 

  38. Freire T, Lo-Man R, Bay S, Leclerc C (2011) Tn glycosylation of the MUC6 protein modulates its immunogenicity and promotes the induction of Th17-biased T cell responses. J Biol Chem 286(10):7797–7811. https://doi.org/10.1074/jbc.M110.209742

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki Y, Sutoh M, Hatakeyama S, Mori K, Yamamoto H, Koie T, Saitoh H, Yamaya K, Funyu T, Habuchi T, Arai Y, Fukuda M, Ohyama C, Tsuboi S (2012) MUC1 carrying core 2 O-glycans functions as a molecular shield against NK cell attack, promoting bladder tumor metastasis. Int J Oncol 40(6):1831–1838. https://doi.org/10.3892/ijo.2012.1411

    Article  CAS  PubMed  Google Scholar 

  40. Takamiya R, Ohtsubo K, Takamatsu S, Taniguchi N, Angata T (2013) The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-beta secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology 23(2):178–187. https://doi.org/10.1093/glycob/cws139

    Article  CAS  PubMed  Google Scholar 

  41. Carrascal MA, Severino PF, Guadalupe Cabral M, Silva M, Ferreira JA, Calais F, Quinto H, Pen C, Ligeiro D, Santos LL, Dall’Olio F, Videira PA (2014) Sialyl Tn-expressing bladder cancer cells induce a tolerogenic phenotype in innate and adaptive immune cells. Molecular Oncol 8(3):753–765. https://doi.org/10.1016/j.molonc.2014.02.008

    Article  CAS  Google Scholar 

  42. Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD, Klausing S, Hillier M, Maher J, Noll T, Crocker PR, Taylor-Papadimitriou J, Burchell JM (2016) The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol 17(11):1273–1281. https://doi.org/10.1038/ni.3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Madsen CB, Petersen C, Lavrsen K, Harndahl M, Buus S, Clausen H, Pedersen AE, Wandall HH (2012) Cancer associated aberrant protein O-glycosylation can modify antigen processing and immune response. PLoS One 7(11):e50139. https://doi.org/10.1371/journal.pone.0050139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by funding from the National Key R&D Program of China (2016YFC1303100), National Natural Science Foundation of China (31570803, 81773090), and Research Program of Shanghai Municipal Commission of Health and Family Planning (20154Y0049).

Author information

Authors and Affiliations

Authors

Contributions

HL designed and executed experiments and contributed to the revision of the manuscript. CX contributed to the design of the experiments and prepared the manuscript. GZ and MY performed IHC, IF, and flow cytometry experiments and analyzed the bioinformatics data. JL contributed to the analysis of the data and manuscript preparation. YW contributed to the analysis of the immune cell infiltration data.

Corresponding authors

Correspondence to Haiou Liu or Congjian Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was conducted in accordance with the Declaration of Helsinki and was approved by the Ethics Committee of Obstetrics and Gynecology Hospital, Fudan University (Kyy2016-49, for cohort 1; Kyy2017-27, for cohort 3) and the Ethics Committee of Suzhou Municipal Hospital (2018-0715, for cohort 2).

Informed consent

All participants included in this study provided written informed consent, which allowed us to use their specimens and data for publication. In this study, patients in cohort 1 and 2 provided informed consent prior to surgery for the use of their paraffin-embedded tissue blocks after a definitive diagnosis, and patients in cohort 3 provided informed consent for use of fresh tissues before surgery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Lu, J., Yang, M. et al. Elevated GALNT10 expression identifies immunosuppressive microenvironment and dismal prognosis of patients with high grade serous ovarian cancer. Cancer Immunol Immunother 69, 175–187 (2020). https://doi.org/10.1007/s00262-019-02454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02454-1

Keywords

Navigation