Skip to main content
Log in

Identification and characterization of genes regulated by AqsR, a LuxR-type regulator in Acinetobacter oleivorans DR1

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The complete genome of Acinetobacter oleivorans DR1 contains AqsR and AqsI genes, which are LuxR and LuxI homolog, respectively. In a previous study, we demonstrated that quorum sensing (QS) signals play an important role in biofilm formation and hexadecane biodegradation. However, the regulation of genes controlled by the QS system in DR1 remains unexplored. We constructed an aqsR mutant and performed RNA sequencing analysis to understand the QS system. A total of 353 genes were differentially expressed during the stationary phase of wild-type cells compared to that of the aqsR mutant. AqsR appears to be an exceptionally important regulator because knockout of aqsR affected global gene expression. Genes involved in posttranslational modification, chaperones, cell wall structure, secondary metabolites biosynthesis, and stress defense were highly upregulated only in the wild type. Among upregulated genes, both the AOLE_03905 (putative surface adhesion protein) and the AOLE_11355 (L-asparaginase) genes have putative LuxR binding sites at their promoter regions. Soluble AqsR proteins were successfully purified in Escherichia coli harboring both aqsR and aqsI. Comparison of QS signals in an AqsI–AqsR co-overexpression strain with N-acyl homoserine lactone standards showed that the cognate N-acyl homoserine lactone binding to AqsR might be 3OH C12HSL. Our electrophoretic mobility shift assays with purified AqsR revealed direct binding of AqsR to those promoter regions. Our data showed that AqsR functions as an important regulator and is associated with several phenotypes, such as hexadecane utilization, biofilm formation, and sensitivity to cumene hydroperoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antunes LC, Ferreira RB, Lostroh CP, Greenberg EP (2008) A mutational analysis defines Vibrio fischeri LuxR binding sites. J Bacteriol 190(13):4392–4397

    Article  PubMed  CAS  Google Scholar 

  • Atkinson S, Chang CY, Sockett RE, Cámara M, Williams P (2006) Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. J Bacteriol 188:1451–1461

    Article  PubMed  CAS  Google Scholar 

  • Bhargava N, Sharma P, Capalash N (2010) Quorum sensing in Acinetobacter: an emerging pathogen. Crit Rev Microbiol 36:349–360

    Article  PubMed  CAS  Google Scholar 

  • Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M (2010) Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog 6:e1000834

    Article  PubMed  Google Scholar 

  • Cangelosi GA, Best EA, Martinetti G, Nester EW (1991) Genetic analysis of Agrobacterium. Methods Enzymol 204:384–397

    Article  PubMed  CAS  Google Scholar 

  • Castang S, Reverchon S, Gouet P, Nasser W (2006) Direct evidence for the modulation of the activity of the Erwinia chrysanthemi quorum-sensing regulator ExpR by acylhomoserine lactone pheromone. J Biol Chem 281:29972–29987

    Article  PubMed  CAS  Google Scholar 

  • Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11:1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Chai Y, Winans SC (2009) The chaperone GroESL enhances the accumulation of soluble, active TraR protein, a quorum-sensing transcription factor from Agrobacterium tumefaciens. J Bacteriol 191:3706–3711

    Article  PubMed  CAS  Google Scholar 

  • Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penadés JR (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896

    Article  PubMed  CAS  Google Scholar 

  • Devine JH, Shadel GS, Baldwin TO (1989) Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. Proc Natl Acad Sci U S A 86:5688–5692

    Article  PubMed  CAS  Google Scholar 

  • Duerkop BA, Varga J, Chandler JR, Peterson SB, Herman JP, Churchill ME, Parsek MR, Nierman WC, Greenberg EP (2009) Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis. J Bacteriol 191:3909–3918

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Sheppard K, Namgoong S, Ambrogelly A, Polycarpo C, Randau L, Tumbula-Hansen D, Söll D (2004) Aminoacyl-tRNA synthesis by pre-translational amino acid modification. RNA Biol 1:16–20

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Sheppard K, Tumbula-Hansen D, Söll D (2005) Gln-tRNAGln formation from Glu-tRNAGln requires cooperation of an asparaginase and a Glu-tRNAGln kinase. J Biol Chem 280:8150–8155

    Article  PubMed  CAS  Google Scholar 

  • Flavier AB, Ganova-Raeva LM, Schell MA, Denny TP (1997) Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester. J Bacteriol 179(22):7089–7097

    PubMed  CAS  Google Scholar 

  • Fuqua C, Winans SC (1996) Localization of OccR-activated and TraR-activated promoters that express two ABC-type permeases and the traR gene of Ti plasmid pTiR10. Mol Microbiol 20:1199–1210

    Article  PubMed  CAS  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    PubMed  CAS  Google Scholar 

  • Gaddy JA, Actis LA (2009) Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol 4:273–278

    Article  PubMed  CAS  Google Scholar 

  • George Cisar EA, Geisinger E, Muir TW, Novick RP (2009) Symmetric signalling within asymmetric dimers of the Staphylococcus aureus receptor histidine kinase AgrC. Mol Microbiol 74:44–57

    Article  PubMed  Google Scholar 

  • González RH, Dijkshoorn L, Van den Barselaar M, Nudel C (2009) Quorum sensing signal profile of Acinetobacter strains from nosocomial and environmental sources. Rev Argent Microbiol 41:73–78

    PubMed  Google Scholar 

  • Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R (2010) Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol 13:232–239

    Article  PubMed  CAS  Google Scholar 

  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Høiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815

    Google Scholar 

  • Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T (2002) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184:290–301

    Article  PubMed  CAS  Google Scholar 

  • Jung J, Baek JH, Park W (2010) Complete genome sequence of the diesel-degrading Acinetobacter species strain DR1. J Bacteriol 192:4794–4795

    Article  PubMed  CAS  Google Scholar 

  • Jung J, Noh J, Park W (2011) Physiological and metabolic responses for hexadecane degradation in Acinetobacter oleivorans DR1. J Microbiol 49:208–215

    Article  PubMed  CAS  Google Scholar 

  • Kang YS, Park W (2010a) Trade-off between antibiotic resistance and biological fitness in Acinetobacter species strain DR1. Environ Microbiol 12:1304–1318

    Article  PubMed  CAS  Google Scholar 

  • Kang YS, Park W (2010b) Contribution of quorum-sensing system to hexadecane degradation and biofilm formation in Acinetobacter species strain DR1. J Appl Microbiol 109:1650–1659

    PubMed  CAS  Google Scholar 

  • Kaplan HB, Greenberg EP (1987) Overproduction and purification of the luxR gene product: transcriptional activator of the Vibrio fischeri luminescence system. Proc Natl Acad Sci U S A 84:6639–6643

    Article  PubMed  CAS  Google Scholar 

  • Kelo E, Noronkoski T, Stoineva IB, Petkov DD, Mononen I (2002) Beta-aspartylpeptides as substrates of L-asparaginases from Escherichia coli and Erwinia chrysanthemi. FEBS Lett 528:130–132

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Jeon CO, Park W (2008) Dual regulation of zwf-1 by both 2-keto-3-deoxy-6-phosphogluconate and oxidative stress in Pseudomonas putida. Microbiology 154:3905–3916

    Article  PubMed  CAS  Google Scholar 

  • Lamont IL, Martin LW (2003) Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology 149:833–842

    Article  PubMed  CAS  Google Scholar 

  • Lasa I (2006) Towards the identification of the common features of bacterial biofilm development. Int Microbiol 9:21–28

    PubMed  CAS  Google Scholar 

  • Lasa I, Penadés JR (2006) Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157:99–107

    Article  PubMed  CAS  Google Scholar 

  • Latasa C, Roux A, Toledo-Arana A, Ghigo JM, Gamazo C, Penadés JR, Lasa I (2005) BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar enteritidis. Mol Microbiol 58:1322–1339

    Article  PubMed  CAS  Google Scholar 

  • Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, Lazdunski A, Williams P (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17(2):333–343

    Article  PubMed  CAS  Google Scholar 

  • Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181(3):748–756

    PubMed  CAS  Google Scholar 

  • Loehfelm TW, Luke NR, Campagnari AA (2008) Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J Bacteriol 190:1036–1044

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Gil M, Yousef-Coronado F, Espinosa-Urgel M (2010) LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol 77:549–561

    Article  PubMed  Google Scholar 

  • Minogue TD, Wehland-von Trebra M, Bernhard F, von Bodman SB (2002) The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol Microbiol 44:1625–1635

    Article  PubMed  CAS  Google Scholar 

  • Minogue TD, Carlier AL, Koutsoudis MD, von Bodman SB (2005) The cell density-dependent expression of stewartan exopolysaccharide in Pantoea stewartii ssp. stewartii is a function of EsaR-mediated repression of the rcsA gene. Mol Microbiol 56:189–203

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  • Niu C, Clemmer KM, Bonomo RA, Rather PN (2008) Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J Bacteriol 190:3386–3392

    Article  PubMed  CAS  Google Scholar 

  • Oka A, Sugisaki H, Takanami M (1981) Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol 147:217–226

    Article  PubMed  CAS  Google Scholar 

  • Philippe N, Alcaraz JP, Coursange E, Geiselmann J, Schneider D (2004) Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51:246–255

    Article  PubMed  CAS  Google Scholar 

  • Rader BA, Campagna SR, Semmelhack MF, Bassler BL, Guillemin K (2007) The quorum-sensing molecule autoinducer 2 regulates motility and flagellar morphogenesis in Helicobacter pylori. J Bacteriol 189:6109–6117

    Article  PubMed  CAS  Google Scholar 

  • Reverchon S, Bouillant ML, Salmond G, Nasser W (1998) Integration of the quorum-sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemi. Mol Microbiol 29:1407–1418

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg M, Bayer EA, Delarea J, Rosenberg E (1982) Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44:929–937

    PubMed  CAS  Google Scholar 

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  PubMed  CAS  Google Scholar 

  • Seo H, Kim J, Jung J, Jin HM, Jeon CO, Park W (2011) Complexity of cell–cell interactions between Pseudomonas sp. AS1 and Acinetobacter oleivorans DR1: metabolic commensalism, biofilm formation and quorum quenching. Res Microbiol 163:173–181

    Article  PubMed  Google Scholar 

  • Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94:6036–6041

    Google Scholar 

  • Stanley NR, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924

    Article  PubMed  CAS  Google Scholar 

  • Swem LR, Swem DL, O’Loughlin CT, Gatmaitan R, Zhao B, Ulrich SM, Bassler BL (2009) A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Mol Cell 35:143–153

    Article  PubMed  CAS  Google Scholar 

  • Tormo MA, Knecht E, Götz F, Lasa I, Penadés JR (2005) Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151:2465–2475

    Article  PubMed  CAS  Google Scholar 

  • Urbanowski ML, Lostroh CP, Greenberg EP (2004) Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein. J Bacteriol 186:631–637

    Google Scholar 

  • Watanabe K, Kodama Y, Harayama S (2001) Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods 44:253–262

    Article  PubMed  CAS  Google Scholar 

  • Waters CM, Lu W, Rabinowitz JD, Bassler BL (2008) Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 190:2527–2536

    Google Scholar 

  • Weiss LE, Badalamenti JP, Weaver LJ, Tascone AR, Weiss PS, Richard TL, Cirino PC (2008) Engineering motility as a phenotypic response to LuxI/R-dependent quorum sensing in Escherichia coli. Biotechnol Bioeng 100:1251–1255

    Article  PubMed  CAS  Google Scholar 

  • White CE, Winans SC (2007) The quorum-sensing transcription factor TraR decodes its DNA binding site by direct contacts with DNA bases and by detection of DNA flexibility. Mol Microbiol 64(1):245–256

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Martinez-Yamout MA, Dickerson TJ, Brogan AP, Wright PE, Dyson HJ (2006) Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. J Mol Biol 355:262–273

    Article  PubMed  CAS  Google Scholar 

  • Yi H, Cho YJ, Won S, Lee JE, Jin Yu H, Kim S, Schroth GP, Luo S, Chun J (2011) Duplex-specific nuclease efficiently removes rRNA for prokaryotic RNA-seq. Nucleic Acids Res 39:e140

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Winans SC (2001) The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc Natl Acad Sci U S A 98:1507–1512

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 99:3129–3134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (2012-0005277) from the MEST/NRF program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojun Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1545 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Park, W. Identification and characterization of genes regulated by AqsR, a LuxR-type regulator in Acinetobacter oleivorans DR1. Appl Microbiol Biotechnol 97, 6967–6978 (2013). https://doi.org/10.1007/s00253-013-5006-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5006-7

Keywords

Navigation