Skip to main content
Log in

Expression and export: recombinant protein production systems for Aspergillus

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Several Aspergillus species, in particular Aspergillus niger and Aspergillus oryzae, are widely used as protein production hosts in various biotechnological applications. In order to improve the expression and secretion of recombinant proteins in these filamentous fungi, several novel genetic engineering strategies have been developed in recent years. This review describes state-of-the-art genetic manipulation technologies used for strain improvement, as well as recent advances in designing the most appropriate engineering strategy for a particular protein production process. Furthermore, current developments in identifying bottlenecks in the protein production and secretion pathways are described and novel approaches to overcome these limitations are introduced. An appropriate combination of expression vectors and optimized host strains will provide cell factories customized for each production process and expand the great potential of Aspergilli as biotechnology workhorses to more complex multi-step industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aleksenko A, Clutterbuck AJ (1997) Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. Fungal Genet Biol 21:373–387

    CAS  Google Scholar 

  • Andersen MR, Nielsen J (2009) Current status of systems biology in Aspergilli. Fungal Genet Biol 46(Suppl 1):S180–190

    CAS  Google Scholar 

  • Archer DB, Jeenes DJ, MacKenzie DA, Brightwell G, Lambert N, Lowe G, Radford SE, Dobson CM (1990) Hen egg white lysozyme expressed in, and secreted from, Aspergillus niger is correctly processed and folded. Biotechnology 8:741–745

    CAS  Google Scholar 

  • Barcellos FG, Fungaro MH, Furlaneto MC, Lejeune B, Pizzirani-Kleiner AA, de Azevedo JL (1998) Genetic analysis of Aspergillus nidulans unstable transformants obtained by the biolistic process. Can J Microbiol 44:1137–1141

    CAS  Google Scholar 

  • Bocking SP, Wiebe MG, Robson GD, Hansen K, Christiansen LH, Trinci AP (1999) Effect of branch frequency in Aspergillus oryzae on protein secretion and culture viscosity. Biotechnol Bioeng 65:638–648

    CAS  Google Scholar 

  • Bohlin C, Jonsson LJ, Roth R, van Zyl WH (2006) Heterologous expression of Trametes versicolor laccase in Pichia pastoris and Aspergillus niger. Appl Biochem Biotechnol 129–132:195–214

    Google Scholar 

  • Breakspear A, Momany M (2007) The first fifty microarray studies in filamentous fungi. Microbiology 153:7–15

    CAS  Google Scholar 

  • Broekhuijsen MP, Mattern IE, Contreras R, Kinghorn JR, van den Hondel CA (1993) Secretion of heterologous proteins by Aspergillus niger: production of active human interleukin-6 in a protease-deficient mutant by KEX2-like processing of a glucoamylase-hIL6 fusion protein. J Biotechnol 31:135–145

    CAS  Google Scholar 

  • Carrez D, Janssens W, Degrave P, van den Hondel CA, Kinghorn JR, Fiers W, Contreras R (1990) Heterologous gene expression by filamentous fungi: secretion of human interleukin-6 by Aspergillus nidulans. Gene 94:147–154

    CAS  Google Scholar 

  • Conesa A, van den Hondel CA, Punt PJ (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66:3016–3023

    CAS  Google Scholar 

  • Conesa A, Jeenes D, Archer DB, van den Hondel CA, Punt PJ (2002) Calnexin overexpression increases manganese peroxidase production in Aspergillus niger. Appl Environ Microbiol 68:846–851

    CAS  Google Scholar 

  • Contreras R, Carrez D, Kinghorn JR, van den Hondel CA, Fiers W (1991) Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by Aspergillus nidulans and secretion of mature interleukin-6. Biotechnology (N Y) 9:378–381

    CAS  Google Scholar 

  • Cullen D, Gray GL, Wilson LJ, Hayenga K, Lamsa M, Rey MW, Norton S, Berka RM (1987a) Controlled expression and secretion of the bovine chymosin in Aspergillus nidulans. Bio/Technology 5:369–376

    CAS  Google Scholar 

  • Cullen D, Leong SA, Wilson LJ, Henner DJ (1987b) Transformation of Aspergillus nidulans with the hygromycin-resistance gene, hph. Gene 57:21–26

    CAS  Google Scholar 

  • David H, Akesson M, Nielsen J (2003) Reconstruction of the central carbon metabolism of Aspergillus niger. Eur J Biochem 270:4243–4253

    CAS  Google Scholar 

  • Davies RW (1991) Molecular biology of a high-level recombinant protein production system in Aspergillus. In: Leong SA, Berka RM (eds) Molecular industrial mocology systems and applications for filamentous fungi. Morris-Bekker, New York

    Google Scholar 

  • Davies RW (1994) Heterologous gene expression and protein secretion in Aspergillus. Prog Ind Microbiol 29:527–560

    CAS  Google Scholar 

  • de Bekker C, Wiebenga A, Aguilar G, Wosten HA (2009) An enzyme cocktail for efficient protoplast formation in Aspergillus niger. J Microbiol Meth 76:305–306

    Google Scholar 

  • de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Google Scholar 

  • De Lucas JR, Gregory S, Turner G (1994) Analysis of the regulation of the Aspergillus nidulans acuD gene, encoding isocitrate lyase, by construction of a hybrid promoter. Mol Gen Genet 243:654–659

    Google Scholar 

  • de Vries RP, Burgers K, van de Vondervoort PJ, Frisvad JC, Samson RA, Visser J (2004) A new black Aspergillus species, A. vadensis, is a promising host for homologous and heterologous protein production. Appl Environ Microbiol 70:3954–3959

    Google Scholar 

  • DeFazio LG, Stansel RM, Griffith JD, Chu G (2002) Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J 21:3192–3200

    CAS  Google Scholar 

  • Driouch H, Sommer B, Wittmann C (2009) Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnol Bioeng 105:1058–68

    Google Scholar 

  • Driouch HB, Roth A, Dersch P, Wittmann C (2010) Optimized bioprocess for production of fructofuranosidase by recombinant Aspergillus niger Appl. Microbiol. Biotechnol. (in press).

  • Dunn-Coleman NS, Bloebaum P, Berka RM, Bodie E, Robinson N, Armstrong G, Ward M, Przetak M, Carter GL, LaCost R, Wilson LJ, Kodama KH, Baliu EF, Bower B, Lamsa M, Heinsohn H (1991) Commercial levels of chymosin production by Aspergillus. Biotechnology (N Y) 9:976–981

    CAS  Google Scholar 

  • Eibes GM, Lu-Chau TA, Ruiz-Duenas FJ, Feijoo G, Martinez MJ, Martinez AT, Lema JM (2009) Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts. Bioprocess Biosyst Eng 32:129–134

    CAS  Google Scholar 

  • Faus I, C del Moral, N Adroer, JL del Rio, C Patino, H Sisniega, C Casas, J Blade & . Rubio (1998) Secretion of the sweet-tasting protein thaumatin by recombinant strains of Aspergillus niger var. awamori. Appl Microbiol Biotechnol 49:393-398

  • Felenbok B (1991) The ethanol utilization regulon of Aspergillus nidulans: the alcA-alcR system as a tool for the expression of recombinant proteins. J Biotechnol 17:11–17

    CAS  Google Scholar 

  • Forment JV, Ramon D, MacCabe AP (2006) Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Curr Genet 50:217–224

    CAS  Google Scholar 

  • Fowler T, Berka RM, Ward M (1990) Regulation of the glaA gene of Aspergillus niger. Curr Genet 18:537–545

    CAS  Google Scholar 

  • Frenken LG, Hessing JG, Van den Hondel CA, Verrips CT (1998) Recent advances in the large-scale production of antibody fragments using lower eukaryotic microorganisms. Res Immunol 149:589–599

    CAS  Google Scholar 

  • Gomi K, Akeno T, Minetoki T, Ozeki K, Kumagai C, Okazaki N, Iimura Y (2000) Molecular cloning and characterization of a transcriptional activator gene, amyR, involved in the amylolytic gene expression in Aspergillus oryzae. Biosci Biotechnol Biochem 64:816–827

    CAS  Google Scholar 

  • Gordon CL, Khalaj V, Ram AF, Archer DB, Brookman JL, Trinci AP, Jeenes DJ, Doonan JH, Wells B, Punt PJ, van den Hondel CA, Robson GD (2000) Glucoamylase::green fluorescent protein fusions to monitor protein secretion in Aspergillus niger. Microbiology 146:415–426

    CAS  Google Scholar 

  • Gouka RJ, Hessing JG, Punt PJ, Stam H, Musters W, Van den Hondel CA (1996a) An expression system based on the promoter region of the Aspergillus awamori 1, 4-beta-endoxylanase A gene. Appl Microbiol Biotechnol 46:28–35

    CAS  Google Scholar 

  • Gouka RJ, Punt PJ, Hessing JG, van den Hondel CA (1996b) Analysis of heterologous protein production in defined recombinant Aspergillus awamori strains. Appl Environ Microbiol 62:1951–1957

    CAS  Google Scholar 

  • Grimm LH, Kelly S, Krull R, Hempel DC (2005) Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 69:375–384

    CAS  Google Scholar 

  • Guebel D, Torres-Daria N (2001) Optimization of the citric acid production by Aspergillus niger through a metabolic flux balance model. Electron J Biotech 4:1–14

    Google Scholar 

  • Guillemette T, van Peij NN, Goosen T, Lanthaler K, Robson GD, van den Hondel CA, Stam H, Archer DB (2007) Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. BMC Genomics 8:158

    Google Scholar 

  • Gwynne DI, Buxton FP, Williams SA, Garven S, Davies RW (1987) Genetically engineered secretion of active human interferon and a bacterial endoglucanase from Aspergillus nidulans. Bio/Technology 5:713–719

    CAS  Google Scholar 

  • Gwynne DI, Buxton FP, Williams SA, Sills AM, Johnstone JA, Buch JK, Guo ZM, Drake D, Westphal M, Davies RW (1989) Development of an expression system in Aspergillus nidulans. Biochem Soc Trans 17:338–340

    CAS  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    CAS  Google Scholar 

  • Hintz WE, Lagosky PA (1993) A glucose-derepressed promoter for expression of heterologous products in the filamentous fungus Aspergillus nidulans. Biotechnology (N Y) 11:815–818

    CAS  Google Scholar 

  • Hofmann G, McIntyre M, Nielsen J (2003) Fungal genomics beyond Saccharomyces cerevisiae? Curr Opin Biotechnol 14:226–231

    CAS  Google Scholar 

  • Huge-Jensen B, Andreasen F, Christensen T, Christensen M, Thim L, Boel E (1989) Rhizomucor miehei triglyceride lipase is processed and secreted from transformed Aspergillus oryzae. Lipids 24:781–785

    CAS  Google Scholar 

  • Ishida H, Hata Y, Kawato A, Abe Y, Kashiwagi Y (2004) Isolation of a novel promoter for efficient protein production in Aspergillus oryzae. Biosci Biotechnol Biochem 68:1849–1857

    CAS  Google Scholar 

  • Jacobs DI, Olsthoorn MM, Maillet I, Akeroyd M, Breestraat S, Donkers S, van der Hoeven RA, van den Hondel CA, Kooistra R, Lapointe T, Menke H, Meulenberg R, Misset M, Muller WH, van Peij NN, Ram A, Rodriguez S, Roelofs MS, Roubos JA, van Tilborg MW, Verkleij AJ, Pel HJ, Stam H, Sagt CM (2009) Effective lead selection for improved protein production in Aspergillus niger based on integrated genomics. Fungal Genet Biol 46(Suppl 1):S141–152

    CAS  Google Scholar 

  • Jeenes DJ, Marczinke B, MacKenzie DA, Archer DB (1993) A truncated glucoamylase gene fusion for heterologous protein secretion from Aspergillus niger. FEMS Microbiol Lett 107:267–271

    CAS  Google Scholar 

  • Jin FJ, Watanabe T, Juvvadi PR, Maruyama J, Arioka M, Kitamoto K (2007) Double disruption of the proteinase genes, tppA and pepE, increases the production level of human lysozyme by Aspergillus oryzae. Appl Microbiol Biotechnol 76:1059–1068

    CAS  Google Scholar 

  • Joosten V, Gouka RJ, van den Hondel CA, Verrips CT, Lokman BC (2005a) Expression and production of llama variable heavy-chain antibody fragments (V(HH)s) by Aspergillus awamori. Appl Microbiol Biotechnol 66:384–392

    CAS  Google Scholar 

  • Joosten V, Roelofs MS, van den Dries N, Goosen T, Verrips CT, van den Hondel CA, Lokman BC (2005b) Production of bifunctional proteins by Aspergillus awamori: llama variable heavy chain antibody fragment (V(HH)) R9 coupled to Arthromyces ramosus peroxidase (ARP). J Biotechnol 120:347–359

    CAS  Google Scholar 

  • Karnaukhova E, Ophir Y, Trinh L, Dalal N, Punt PJ, Golding B, Shiloach J (2007) Expression of human alpha1-proteinase inhibitor in Aspergillus niger. Microb Cell Fact 6:34

    Google Scholar 

  • Kelly JM, Hynes MJ (1987) Multiple copies of the amdS gene of Aspergillus nidulans cause titration of trans-acting regulatory proteins. Curr Genet 12:21–31

    CAS  Google Scholar 

  • Kim Y, Nandakumar MP, Marten MR (2008) The state of proteome profiling in the fungal genus Aspergillus. Brief Funct Genomic Proteomic 7:87–94

    CAS  Google Scholar 

  • Kitamoto N, Matsui J, Kawai Y, Kato A, Yoshino S, Ohmiya K, Tsukagoshi N (1998) Utilization of the TEF1-alpha gene (TEF1) promoter for expression of polygalacturonase genes, pgaA and pgaB, in Aspergillus oryzae. Appl Microbiol Biotechnol 50:85–92

    CAS  Google Scholar 

  • Korman DR, Bayliss FT, Barnett CC, Carmona CL, Kodama KH, Royer TJ, Thompson SA, Ward M, Wilson LJ, Berka RM (1990) Cloning, characterization, and expression of two alpha-amylase genes from Aspergillus niger var. awamori. Curr Genet 17:203–212

    CAS  Google Scholar 

  • Levasseur A, Pagès S, Fierobe HP, Navarro D, Punt P, Belaïch JP, Asther M, Record E (2004) Design and production in Aspergillus niger of a chimeric protein associating a fungal feruloyl esterase and a clostridial dockerin domain. Appl Environ Microbiol 70:6984–91

    CAS  Google Scholar 

  • Liu L, Liu J, Qiu RX, Zhu XG, Dong ZY, Tang GM (2003) Improving heterologous gene expression in Aspergillus niger by introducing multiple copies of protein-binding sequence containing CCAAT to the promoter. Lett Appl Microbiol 36:358–361

    CAS  Google Scholar 

  • Lombrana M, Moralejo FJ, Pinto R, Martin JF (2004) Modulation of Aspergillus awamori thaumatin secretion by modification of bipA gene expression. Appl Environ Microbiol 70:5145–5152

    CAS  Google Scholar 

  • Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75

    CAS  Google Scholar 

  • Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    Google Scholar 

  • MacRae WD, Buxton FP, Gwynne DI, Davies RW (1993) Heterologous protein secretion directed by a repressible acid phosphatase system of Aspergillus niger. Gene 132:193–198

    CAS  Google Scholar 

  • Maiya S, Grundmann A, Li SM, Turner G (2009) Improved tryprostatin B production by heterologous gene expression in Aspergillus nidulans. Fungal Genet Biol 46:436–440

    CAS  Google Scholar 

  • Maras M, van Die I, Contreras R, van den Hondel CA (1999) Filamentous fungi as production organisms for glycoproteins of bio-medical interest. Glycoconj J 16:99–107

    CAS  Google Scholar 

  • Mathieu M, Felenbok B (1994) The Aspergillus nidulans CREA protein mediates glucose repression of the ethanol regulon at various levels through competition with the ALCR-specific transactivator. EMBO J 13:4022–4027

    CAS  Google Scholar 

  • Melzer G, Dalpiaz A, Grote A, Kucklick M, Gocke Y, Jonas R, Dersch P, Franco-Lara E, Nortemann B, Hempel DC (2007) Metabolic flux analysis using stoichiometric models for Aspergillus niger: comparison under glucoamylase-producing and non-producing conditions. J Biotechnol 132:405–417

    CAS  Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi–progress, obstacles and future trends. Biotechnol Adv 26:177–185

    CAS  Google Scholar 

  • Meyer V, Mueller D, Strowig T, Stahl U (2003) Comparison of different transformation methods for Aspergillus giganteus. Curr Genet 43:371–377

    CAS  Google Scholar 

  • Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775

    CAS  Google Scholar 

  • Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (2008) Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat Protoc 3:1671–1678

    Google Scholar 

  • Mikosch T, Klemm P, Gassen HG, van den Hondel CA, Kemme M (1996) Secretion of active human mucus proteinase inhibitor by Aspergillus niger after KEX2-like processing of a glucoamylase-inhibitor fusion protein. J Biotechnol 52:97–106

    CAS  Google Scholar 

  • Moralejo FJ, Cardoza RE, Gutierrez S, Martin JF (1999) Thaumatin production in Aspergillus awamori by use of expression cassettes with strong fungal promoters and high gene dosage. Appl Environ Microbiol 65:1168–1174

    CAS  Google Scholar 

  • Moralejo FJ, Watson AJ, Jeenes DJ, Archer DB, Martin JF (2001) A defined level of protein disulfide isomerase expression is required for optimal secretion of thaumatin by Aspergillus awamori. Mol Genet Genomics 266:246–253

    CAS  Google Scholar 

  • Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454

    CAS  Google Scholar 

  • Morita H, Okamoto A, Yamagata Y, Kusumoto K, Koide Y, Ishida H, Takeuchi M (2009) Heterologous expression and characterization of CpI, OcpA, and novel serine-type carboxypeptidase OcpB from Aspergillus oryzae. Appl Microbiol Biotechnol 85:335–346

    CAS  Google Scholar 

  • Muller C, McIntyre M, Hansen K, Nielsen J (2002) Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Appl Environ Microbiol 68:1827–1836

    CAS  Google Scholar 

  • Nakajima K, Asakura T, Maruyama J, Morita Y, Oike H, Shimizu-Ibuka A, Misaka T, Sorimachi H, Arai S, Kitamoto K, Abe K (2006) Extracellular production of neoculin, a sweet-tasting heterodimeric protein with taste-modifying activity, by Aspergillus oryzae. Appl Environ Microbiol 72:3716–3723

    CAS  Google Scholar 

  • Natsume T, Egusa M, Kodama M, Johnson R, Itoh T, Itoh Y (2004) An appropriate increase in the transcription of Aspergillus nidulans uvsC improved gene targeting efficiency. Biosci Biotechnol Biochem 68:1649–1656

    CAS  Google Scholar 

  • Ngiam C, Jeenes DJ, Punt PJ, Van Den Hondel CA, Archer DB (2000) Characterization of a foldase, protein disulfide isomerase A, in the protein secretory pathway of Aspergillus niger. Appl Environ Microbiol 66:775–782

    CAS  Google Scholar 

  • Nikolaev I, Mathieu M, van de Vondervoort P, Visser J, Felenbok B (2002) Heterologous expression of the Aspergillus nidulans alcR-alcA system in Aspergillus niger. Fungal Genet Biol 37:89–97

    CAS  Google Scholar 

  • Nielsen ML, Albertsen L, Lettier G, Nielsen JB, Mortensen UH (2006) Efficient PCR-based gene targeting with a recyclable marker for Aspergillus nidulans. Fungal Genet Biol 43:54–64

    CAS  Google Scholar 

  • Pachlinger R, Mitterbauer R, Adam G, Strauss J (2005) Metabolically independent and accurately adjustable Aspergillus sp. expression system. Appl Environ Microbiol 71:672–678

    CAS  Google Scholar 

  • Panozzo C, Capuano V, Fillinger S, Felenbok B (1997) The zinc binuclear cluster activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans. J Biol Chem 272:22859–22865

    CAS  Google Scholar 

  • Panozzo C, Cornillot E, Felenbok B (1998) The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. J Biol Chem 273:6367–6372

    CAS  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d’Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Google Scholar 

  • Perlinska-Lenart U, Kurzatkowski W, Janas P, Kopinska A, Palamarczyk G, Kruszewska JS (2005) Protein production and secretion in an Aspergillus nidulans mutant impaired in glycosylation. Acta Biochim Pol 52:195–206

    CAS  Google Scholar 

  • Pisanelli I, Kujawa M, Gschnitzer D, Spadiut O, Seiboth B, Peterbauer C (2010) Heterologous expression of an Agaricus meleagris pyranose dehydrogenase-encoding gene in Aspergillus spp. and characterization of the recombinant enzyme. Appl Microbiol Biotechnol 86:599–606

    CAS  Google Scholar 

  • Prathumpai W, McIntyre M, Nielsen J (2004a) The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans. Appl Microbiol Biotechnol 63:748–753

    CAS  Google Scholar 

  • Prathumpai W, Flitter SJ, McIntyre M, Nielsen J (2004b) Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus. Appl Microbiol Biotechnol 65:714–719

    CAS  Google Scholar 

  • Punt PJ, Schuren FH, Lehmbeck J, Christensen T, Hjort C, van den Hondel CA (2008) Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol 45:1591–1599

    CAS  Google Scholar 

  • Qiu R, Zhu X, Liu L, Tang G (2002) Detection of a protein, AngCP, which binds specifically to the three upstream regions of glaA gene in A. niger T21. Sci China C Life Sci 45:527–537

    CAS  Google Scholar 

  • Record E, Punt PJ, Chamkha M, Labat M, van Den Hondel CA, Asther M (2002) Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem 269:602–609

    CAS  Google Scholar 

  • Roberts IN, Jeenes DJ, MacKenzie DA, Wilkinson AP, Sumner IG, Archer DB (1992) Heterologous gene expression in Aspergillus niger: a glucoamylase-porcine pancreatic prophospholipase A2 fusion protein is secreted and processed to yield mature enzyme. Gene 122:155–161

    CAS  Google Scholar 

  • Roth AH, Dersch P (2010) A novel expression system for intracellular production and purification of recombinant affinity-tagged proteins in Aspergillus niger. Appl Microbiol Biotechnol 86:659–670

    CAS  Google Scholar 

  • Sagt CM, ten Haaft PJ, Minneboo IM, Hartog MP, Damveld RA, van der Laan JM, Akeroyd M, Wenzel TJ, Luesken FA, Veenhuis M, van der Klei I, de Winde JH (2009) Peroxicretion: a novel secretion pathway in the eukaryotic cell. BMC Biotechnol 9:48

    Google Scholar 

  • Shimizu-Sato S, Huq E, Tepperman JM, Quail PH (2002) A light-switchable gene promoter system. Nat Biotechnol 20:1041–1044

    CAS  Google Scholar 

  • Sotiriadis A, Keshavarz T, Keshavarz-Moore E (2001) Factors affecting the production of a single-chain antibody fragment by Aspergillus awamori in a stirred tank reactor. Biotechnol Prog 17:618–623

    CAS  Google Scholar 

  • Spencer JA, Jeenes DJ, MacKenzie DA, Haynie DT, Archer DB (1998) Determinants of the fidelity of processing glucoamylase-lysozyme fusions by Aspergillus niger. Eur J Biochem 258:107–112

    CAS  Google Scholar 

  • Storms R, Zheng Y, Li H, Sillaots S, Martinez-Perez A, Tsang A (2005) Plasmid vectors for protein production, gene expression and molecular manipulations in Aspergillus niger. Plasmid 53:191–204

    CAS  Google Scholar 

  • Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics 275:460–470

    CAS  Google Scholar 

  • Tamalampudi S, Talukder MM, Hama S, Tanino T, Suzuki Y, Kondo A, Fukuda H (2007) Development of recombinant Aspergillus oryzae whole-cell biocatalyst expressing lipase-encoding gene from Candida antarctica. Appl Microbiol Biotechnol 75:387–395

    CAS  Google Scholar 

  • Tani S, Kawaguchi T, Kato M, Kobayashi T, Tsukagoshi N (2000) A novel nuclear factor, SREB, binds to a cis-acting element, SRE, required for inducible expression of the Aspergillus oryzae Taka-amylase A gene in A. nidulans. Mol Gen Genet 263:232–238

    CAS  Google Scholar 

  • te Biesebeke R, Record E, van Biezen N, Heerikhuisen M, Franken A, Punt PJ, van den Hondel CA (2005) Branching mutants of Aspergillus oryzae with improved amylase and protease production on solid substrates. Appl Microbiol Biotechnol 69:44–50

    Google Scholar 

  • Todaka N, Lopez CM, Inoue T, Saita K, Maruyama JI, Arioka M, Kitamoto K, Kudo T, Moriya S (2009) Heterologous expression and characterization of an endoglucanase from a symbiotic protist of the lower termite, Reticulitermes speratus. Appl Biochem Biotechnol 160:1168–78

    Google Scholar 

  • Tsuchiya K, Tada S, Gomi K, Kitamoto K, Kumagai C, Jigami Y, Tamura G (1992) High level expression of the synthetic human lysozyme gene in Aspergillus oryzae. Appl Microbiol Biotechnol 38:109–114

    CAS  Google Scholar 

  • Turnbull IF, Rand K, Willetts NS, Hynes MJ (1989) Expression of the Escherichia coli enterotoxin subunit B gene in Aspergillus nidulans directed by the amdS promoter. Bio/Technology 7:169–174

    CAS  Google Scholar 

  • Turnbull IF, Smith DR, Sharp PJ, Cobon GS, Hynes MJ (1990) Expression and secretion in Aspergillus nidulans and Aspergillus niger of a cell surface glycoprotein from the cattle tick, Boophilus microplus, by using the fungal amdS promoter system. Appl Environ Microbiol 56:2847–2852

    CAS  Google Scholar 

  • Turner G (1990) Expression systems and protein production in filamentous fungi. In: Harris TJR (ed) Protein production in biotechnology. Elsvier Applied Science, London

    Google Scholar 

  • Upshall A, Kumar A, Bailey MC, Parker MD, Favreau MA, Lewison KP, Josep ML, Maraganore JM, McKnight GL (1987) Secretion of active human-tissue plasminogen-activator from the filamentous fungus Aspergillus nidulans. Bio/Technology 5:1301–1304

    CAS  Google Scholar 

  • Valkonen M, Ward M, Wang H, Penttila M, Saloheimo M (2003) Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response. Appl Environ Microbiol 69:6979–6986

    CAS  Google Scholar 

  • van den Brink HJ, Petersen SG, Rahbek-Nielsen H, Hellmuth K, Harboe M (2006) Increased production of chymosin by glycosylation. J Biotechnol 125:304–310

    Google Scholar 

  • van den Hombergh JP, van de Vondervoort PJ, Fraissinet-Tachet L, Visser (1997) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15:256-263

  • van den Hondel CA, Punt PJ, van Grocom RFM (1991) Heterologous gene expression in filamentous fungi. In: Bennette JE, Lasure LL (eds) More gene manipulations in fungi. Academic Press, pp 396-428

  • van Dijck PW, Selten GC, Hempenius RA (2003) On the safety of a new generation of DSM Aspergillus niger enzyme production strains. Regul Toxicol Pharmacol 38:27–35

    Google Scholar 

  • van Gemeren IA, Beijersbergen A, van den Hondel CA, Verrips CT (1998) Expression and secretion of defined cutinase variants by Aspergillus awamori. Appl Environ Microbiol 64:2794–2799

    Google Scholar 

  • Verdoes JC, Punt PJ, Stouthamer AH, van den Hondel CA (1994) The effect of multiple copies of the upstream region on expression of the Aspergillus niger glucoamylase-encoding gene. Gene 145:179–187

    CAS  Google Scholar 

  • Verdoes JC, Punt PJ, van den Hondel CA (1995) Molecular genetic strain improvement for the overproduction of fungal proteins by filamentous fungi. Appl Microbiol Biotechnol 43:195–205

    CAS  Google Scholar 

  • Villanueva A, Maccabe AP, Buesa J, Ramon D (1999) Apparent mRNA instability in Aspergillus nidulans and Aspergillus terreus of a heterologous cDNA encoding the major capsid antigen of Rotavirus. Rev Iberoam Micol 16:130–135

    CAS  Google Scholar 

  • Vogt K, Bhabhra R, Rhodes JC, Askew DS (2005) Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus. BMC Microbiol 5:1

    Google Scholar 

  • Vongsangnak W, Salazar M, Hansen K, Nielsen J (2009) Genome-wide analysis of maltose utilization and regulation in aspergilli. Microbiology 155:3893–3902

    CAS  Google Scholar 

  • Ward M, Wilson LJ, Kodama KH, Rey MW, Berka RM (1990) Improved production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion. Biotechnology (N Y) 8:435–440

    CAS  Google Scholar 

  • Ward PP, Lo JY, Duke M, May GS, Headon DR, Conneely OM (1992a) Production of biologically active recombinant human lactoferrin in Aspergillus oryzae. Biotechnology (N Y) 10:784–789

    CAS  Google Scholar 

  • Ward PP, May GS, Headon DR, Conneely OM (1992b) An inducible expression system for the production of human lactoferrin in Aspergillus nidulans. Gene 122:219–223

    CAS  Google Scholar 

  • Ward M, Lin C, Victoria DC, Fox BP, Fox JA, Wong DL, Meerman HJ, Pucci JP, Fong RB, Heng MH, Tsurushita N, Gieswein C, Park M, Wang H (2004) Characterization of humanized antibodies secreted by Aspergillus niger. Appl Environ Microbiol 70:2567–2576

    CAS  Google Scholar 

  • Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16:31–44

    CAS  Google Scholar 

  • Winge DR, Jensen LT, Srinivasan C (1998) Metal-ion regulation of gene expression in yeast. Curr Opin Chem Biol 2:216–221

    CAS  Google Scholar 

  • Wright JC, Sugden D, Francis-McIntyre S, Riba-Garcia I, Gaskell SJ, Grigoriev IV, Baker SE, Beynon RJ, Hubbard SJ (2009) Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics 10:61

    Google Scholar 

  • Yamada O, Ikeda R, Ohkita Y, Hayashi R, Sakamoto K, Akita O (2007) Gene silencing by RNA interference in the koji mold Aspergillus oryzae. Biosci Biotechnol Biochem 71:138–144

    CAS  Google Scholar 

  • Yano A, Kikuchi S, Nakagawa Y, Sakamoto Y, Sato T (2009) Secretory expression of the non-secretory-type Lentinula edodes laccase by Aspergillus oryzae. Microbiol Res 164:642–649

    CAS  Google Scholar 

  • Yaver DS, Lamsa M, Munds R, Brown SH, Otani S, Franssen L, Johnstone JA, Brody H (2000) Using DNA-tagged mutagenesis to improve heterologous protein production in Aspergillus oryzae. Fungal Genet Biol 29:28–37

    CAS  Google Scholar 

  • Yoder WT, Lehmbeck J, Borriss R (2004) Heterologous expression and protein secretion in filamentous fungi. In: Tkacz JS, Lange L (eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Kluver Academic, pp 201-219

  • Yoon J, Kimura S, Maruyama J, Kitamoto K (2009) Construction of quintuple protease gene disruptant for heterologous protein production in Aspergillus oryzae. Appl Microbiol Biotechnol 82:691–701

    CAS  Google Scholar 

  • Yuan XL, Goosen C, Kools H, van der Maarel MJ, van den Hondel CA, Dijkhuizen L, Ram AF (2006) Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger. Microbiology 152:3061–3073

    CAS  Google Scholar 

  • Yuan XL, Roubos JA, van den Hondel CA, Ram AF (2008) Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger. Mol Genet Genomics 279:11–26

    CAS  Google Scholar 

  • Zheng XF, Kobayashi Y, Takeuchi M (1998) Construction of a low-serine-type-carboxypeptidase-producing mutant of Aspergillus oryzae by the expression of antisense RNA and its use as a host for heterologous protein secretion. Appl Microbiol Biotechnol 49:39–44

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Habib Driouch, Andreas Roth, and Dr. Christoph Wittmann for helpful discussion and data of A. niger cultivation with microparticles and Dr. Fabio Pisano for critical reading of the manuscript. The writing of this review was supported by a grant (SFB578, project A1) of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Dersch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleißner, A., Dersch, P. Expression and export: recombinant protein production systems for Aspergillus . Appl Microbiol Biotechnol 87, 1255–1270 (2010). https://doi.org/10.1007/s00253-010-2672-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2672-6

Keywords

Navigation