Skip to main content
Log in

Alkane hydroxylases involved in microbial alkane degradation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This review focuses on the role and distribution in the environment of alkane hydroxylases and their (potential) applications in bioremediation and biocatalysis. Alkane hydroxylases play an important role in the microbial degradation of oil, chlorinated hydrocarbons, fuel additives, and many other compounds. Environmental studies demonstrate the abundance of alkane degraders and have lead to the identification of many new species, including some that are (near)-obligate alkanotrophs. The availability of a growing collection of alkane hydroxylase gene sequences now allows estimations of the relative abundance of the different enzyme systems and the distribution of the host organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Austin RN et al (2006) The new diagnostic substrate bicyclohexane reveals a radical mechanism for bacterial cytochrome P450 in whole cells. Angew Chem Int Ed (in press) DOI https://doi.org/10.1002/anie.200603282

    CAS  PubMed  Google Scholar 

  • Ayala M, Torres E (2004) Enzymatic activation of alkanes: constraints and prospective. Appl Catal A Gen 272:1–13

    CAS  Google Scholar 

  • Baker PW, Futamata H, Harayama S, Watanabe K (2001) Molecular diversity of pMMO and sMMO in a TCE-contaminated aquifer during bioremediation. FEMS Microbiol Ecol 38:161–167

    CAS  Google Scholar 

  • Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145

    CAS  PubMed  Google Scholar 

  • Bertrand E et al (2005) Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells. J Inorg Biochem 99:1998–2006

    CAS  PubMed  Google Scholar 

  • Brakstad OG, Lodeng AGG (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol 49:94–103

    CAS  PubMed  Google Scholar 

  • Colby J, Stirling DI, Dalton H (1977) Soluble methane mono-oxygenase of Methylococcus capsulatus (Bath)—its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J 165:395–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman NV, Bui NB, Holmes AJ (2006) Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol 8:1228–1239

    CAS  PubMed  Google Scholar 

  • Connon SA, Tovanabootr A, Dolan M, Vergin K, Giovannoni SJ, Semprini L (2005) Bacterial community composition determined by culture-independent and -dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater. Environ Microbiol 7:165–178

    CAS  PubMed  Google Scholar 

  • Coon MJ (2005) Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun 338:378–385

    CAS  PubMed  Google Scholar 

  • Doughty DM, Sayavedra-Soto LA, Arp DJ, Bottomley PJ (2006) Product repression of alkane monooxygenase expression in ‘Pseudomonas butanovora’. J Bacteriol 188:2586–2592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott SJ, Zhu M, Tso L, Nguyen HHT, Yip JHK, Chan SI (1997) Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Am Chem Soc 119:9949–9955

    CAS  Google Scholar 

  • Fujii T, Narikawa T, Sumisa F, Arisawa A, Takeda K, Kato J (2006) Production of α, ω-alkanediols using Escherichia coli expressing a cytochrome P450 from Acinetobacter sp. OC4. Biosci Biotechnol Biochem 70:1379–1385

    CAS  PubMed  Google Scholar 

  • Funhoff EG, van Beilen JB (2006) Alkane activation by P450 oxygenases. Biocat Biotrans (in press)

  • Funhoff EG, Bauer U, García-Rubio I, Witholt B, van Beilen JB (2006a) CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane-hydroxylation. J Bacteriol 188:5220–5227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funhoff EG, Salzmann J, Bauer U, Witholt B, van Beilen JB (2006b) Hydroxylation and epoxidation reactions catalyzed by CYP153 enzymes. Enzyme Microb Technol (in press) DOI https://doi.org/10.1016/j.enzmictec.2006.06.014

    CAS  Google Scholar 

  • Groves JT (2006) High-valent iron in chemical and biological oxidations. J Inorg Biochem 100:434–447

    CAS  PubMed  Google Scholar 

  • Halsey KH, Sayavedra-Soto LA, Bottomley PJ, Arp DJ (2005) Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects. Appl Microbiol Biotechnol 68:794–801

    CAS  PubMed  Google Scholar 

  • Halsey KH, Sayavedra-Soto LA, Bottomley PJ, Arp DJ (2006) Site-directed amino acid substitutions in the hydroxylase a subunit of butane monooxygenase from Pseudomonas butanovora: implications for substrates knocking at the gate. J Bacteriol 188:4962–4969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamamura N, Storfa RT, Semprini L, Arp DJ (1999) Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol 65:4586–4593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamamura N, Olson SH, Ward DM, Inskeep WP (2005) Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. App Environ Microbiol 71:5943–5950

    CAS  Google Scholar 

  • Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214

    CAS  PubMed  Google Scholar 

  • Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nature Rev Microbiol 4:173–182

    CAS  Google Scholar 

  • Heiss-Blanquet S, Benoit Y, Marechaux C, Monot F (2005) Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J Appl Microbiol 99:1392–1403

    CAS  PubMed  Google Scholar 

  • Iida T, Sumita T, Ohta A, Takagi M (2000) The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast 16:1077–1087

    CAS  PubMed  Google Scholar 

  • Johnson EL, Hyman MR (2006) Propane and n-butane oxidation by Pseudomonas putida GPo1. Appl Environ Microbiol 72:950–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson EL, Smith CA, O’Reilly KT, Hyman MR (2004) Induction of methyl tertiary butyl ether (MTBE)-oxidizing activity in Mycobacterium vaccae JOB5 by MTBE. Appl Environ Microbiol 70:1023–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Istok JD, Semprini L (2006) Push–pull tests evaluating in situ aerobic cometabolism of ethylene, propylene, and cis-1,2-dichloroethylene. J Contam Hydrol 82:165–181

    CAS  PubMed  Google Scholar 

  • Kitmitto A, Myronova N, Basu P, Dalton H (2005) Characterization and structural analysis of an active particulate methane monooxygenase trimer from Methylococcus capsulatus (Bath). Biochemistry 44:10954–10965

    CAS  PubMed  Google Scholar 

  • Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD(+)-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota M et al (2005) Isolation and functional analysis of cytochrome P450 CYP153A genes from various environments. Biosci Biotechnol Biochem 69:2421–2430

    CAS  PubMed  Google Scholar 

  • Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479

    CAS  PubMed  Google Scholar 

  • Lee SG, Goo JH, Kim HG, Oh J-I, Kim YM, Kim SW (2004) Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol Lett 26:947–950

    CAS  PubMed  Google Scholar 

  • Li Z et al (2002) Oxidative biotransformations using oxygenases. Curr Opin Chem Biol 6:136–144

    CAS  PubMed  Google Scholar 

  • Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyzes the biological oxidation of methane. Nature 434:177–182

    CAS  PubMed  Google Scholar 

  • Maeng JH, Sakai Y, Tani Y, Kato N (1996) Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp strain M-1. J Bacteriol 178:3695–3700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maier T, Foerster H-H, Asperger O, Hahn U (2001) Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem Biophys Res Commun 286:652–658

    CAS  PubMed  Google Scholar 

  • Marchant R, Sharkey FH, Banat IM, Rahman TJ, Perfumo A (2006) The degradation of n-hexadecane in soil by thermophilic geobacilli. FEMS Microbiol Ecol 56:44–54

    CAS  PubMed  Google Scholar 

  • McDonald IR et al (2006) Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments. FEMS Microbiol Lett 255:225–232

    CAS  PubMed  Google Scholar 

  • Meinhold P, Peters MW, Hartwick A, Hernandez AR, Arnold FH (2006) Engineering cytochrome P450 BM3 for terminal alkane hydroxylation. Adv Synth Catal 348:763–772

    CAS  Google Scholar 

  • Meintanis C, Chalkou KI, Kormas KA, Karagouni AD (2006) Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island. Biodegradation 17:3–9

    CAS  Google Scholar 

  • Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Muller J, Lippard SJ (2001) Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew Chem Int Ed 40:2782–2807

    CAS  Google Scholar 

  • Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332

    CAS  PubMed  Google Scholar 

  • Myronova N, Kitmitto A, Collins RF, Miyaji A, Dalton H (2006) Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath). Biochemistry 45:11905–11914

    CAS  PubMed  Google Scholar 

  • Nodate M, Kubota M, Misawa N (2006) Functional expression system for cytochrome P450 genes using the reductase domain of self-sufficient P450RhF from Rhodococcus sp. NCIMB 9784. Appl Microbiol Biotechnol 71:455–462

    CAS  PubMed  Google Scholar 

  • Pacheco-Oliver M, McDonald IR, Groleau D, Murrell JC, Miguez CB (2002) Detection of methanotrophs with highly divergent pmoA genes from Arctic soils. FEMS Microbiol Lett 209:313–319

    CAS  PubMed  Google Scholar 

  • Park M-O (2005) New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. J Bacteriol 187:1426–1429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN (2006) Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol 188:3763–3773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shanklin J, Whittle E (2003) Evidence linking the Pseudomonas oleovorans alkane omega-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family. FEBS Lett 545:188–192

    CAS  PubMed  Google Scholar 

  • Shennan JL (2006) Utilisation of C-2–C-4 gaseous hydrocarbons and isoprene by microorganisms. J Chem Technol Biotechnol 81:237–256

    CAS  Google Scholar 

  • Smits THM, Röthlisberger M, Witholt B, van Beilen JB (1999) Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol 1:307–318

    CAS  PubMed  Google Scholar 

  • Smits THM, Balada SB, Witholt B, van Beilen JB (2002) Functional analysis of alkane hydroxylases from Gram-negative and Gram-positive bacteria. J Bacteriol 184:1733–1742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Söhngen NL (1913) Benzin, Petroleum, Paraffinöl und Paraffin als Kohlenstoff- und Energiequelle für Mikroben. Zentr Bacteriol Parasitenk Abt II 37:595–609

    Google Scholar 

  • Steinkamp R, Zimmer W, Papen H (2001) Improved method for detection of methanotrophic bacteria in forest soils by PCR. Curr Microbiol 42:316–322

    CAS  PubMed  Google Scholar 

  • Tani A, Ishige T, Sakai Y, Kato N (2001) Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1. J Bacteriol 183:1819–1823

    CAS  Google Scholar 

  • Urlacher VB, Eiben S (2006) Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24:324–330

    CAS  PubMed  Google Scholar 

  • van Beilen JB, Witholt B (2004) Alkane degradation by pseudomonads. In: Ramos JL (ed) The Pseudomonads. Kluwer, Dordrecht

    Google Scholar 

  • van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314

    PubMed  Google Scholar 

  • van Beilen JB, Wubbolts MG, Witholt B (1994) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5:161–174

    PubMed  Google Scholar 

  • van Beilen JB et al (2002) Alkane hydroxylase homologues in Gram-positive strains. Environ Microbiol 4:676–682

    PubMed  Google Scholar 

  • van Beilen JB, Duetz WA, Schmid A, Witholt B (2003a) Practical issues in the application of oxygenases. Trends Biotechnol 21:170–177

    PubMed  Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003b) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440

    Google Scholar 

  • van Beilen JB, Lüscher D, Holtacker R, Bauer U, Witholt B, Duetz WA (2005a) Biocatalytic production of perillyl alcohol from limonene using a novel Mycobacterium cytochrome P450 alkane hydroxylase expressed in P. putida. Appl Environ Microbiol 71:1737–1744

    PubMed  PubMed Central  Google Scholar 

  • van Beilen JB, Smits THM, Balada SB, Roos FF, Brunner T, Witholt B (2005b) Identification of an amino acid position that determines the substrate range of integral-membrane alkane hydroxylases. J Bacteriol 187:85–91

    PubMed  PubMed Central  Google Scholar 

  • van Beilen JB et al (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65

    PubMed  PubMed Central  Google Scholar 

  • Venter JC et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    CAS  PubMed  Google Scholar 

  • Xin J-Y et al (2004) Production of methanol from methane by methanotrophic bacteria. Biocatal Biotransform 22:225–229

    CAS  Google Scholar 

  • Yakimov MM et al (2004) Thalassolituus oleivorans gen. nov., sp nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54:141–148

    CAS  PubMed  Google Scholar 

  • Zhang J, Zheng H, Groce SL, Lipscomb JD (2006) Basis for specificity in methane monooxygenase and related non-heme iron-containing biological oxidation catalysts. J Mol Catal A Chem 251:54–65

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan B. van Beilen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Beilen, J.B., Funhoff, E.G. Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74, 13–21 (2007). https://doi.org/10.1007/s00253-006-0748-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0748-0

Keywords

Navigation