Skip to main content
Log in

Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas putida KT2440 is a physiologically extremely versatile non-pathogenic bacterium that is applied as a "biosafety strain" in biotechnological processes, as authorized by the USA National Institute of Health. Analysis of the P. putida KT2440 whole-genome sequence revealed the genetic organization of the genes fcs, ech, and vdh, which are essential for ferulic acid conversion to vanillic acid via vanillin. To confirm the physiological function of these structural genes as feruloyl-CoA synthetase (Fcs), enoyl-CoA hydratase/aldolase (Ech), and vanillin dehydrogenase (Vdh), respectively, they were cloned and expressed in Escherichia coli. Recombinant strains harboring fcs and ech were able to transform ferulic acid to vanillin. The enzyme activities of Fcs and Vdh were determined in protein extracts of these cells. The essential involvement of fcs, ech and vdh in the catabolism of ferulic acid in P. putida KT2440 was proven by separately inactivating each gene by insertion of Ω-elements. The corresponding mutant strains KT2440fcsΩKm, KT2440echΩKm, and KT2440vdhΩKm were not able to grow on ferulic acid. The potential application of P. putida KT2440 and the mutant strains in biotechnological vanillin production process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Achterholt S, Priefert H, Steinbüchel A (1998) Purification and characterization of the coniferyl aldehyde dehydrogenase from Pseudomonas sp. strain HR199 and molecular characterization of the gene. J Bacteriol 180: 4387–4391

    CAS  PubMed  Google Scholar 

  • Achterholt S, Priefert H, Steinbüchel A (2000) Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 54: 799–807

    PubMed  Google Scholar 

  • Bullock WO, Fernandez JM, Stuart JM (1987) XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. BioTechniques 5: 376–379

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  CAS  PubMed  Google Scholar 

  • Crawford DL, Crawford RL (1980) Microbial degradation of lignin. Enzyme Microb Technol 2: 11–22

    Article  CAS  Google Scholar 

  • Escott-Watson PL, Marais JP (1992) Determination of alkali-soluble phenolic monomers in grasses after separation by thin-layer chromatography. J Chromatogr 604: 290–293

    Article  CAS  Google Scholar 

  • Falconnier B, Lapierre C, Lesage-Meessen L, Yonnet G, Brunerie P, Ceccaldi BC, Corrieu G, Asther M (1994) Vanillin as a product of ferulic acid biotransformation by the white rot fungus Pycnoporus cinnabarinus I-37: identification of metabolic pathways. J Biotechnol 37: 123–132

    CAS  Google Scholar 

  • Franklin FCH, Bagdasarian M, Bagdasarian MM, Timmis KN (1981) Molecular and functional analysis of the TOL plasmid pWW0 from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta-cleavage pathway. Proc Natl Acad Sci USA 78: 7458–7462

    Google Scholar 

  • Friedrich B, Hogrefe C, Schlegel HG (1981) Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J Bacteriol 147: 198–205

    CAS  PubMed  Google Scholar 

  • Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons ELH, Payne J, Rhodes MJC, Walton NJ (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem 273: 4163–4170

    PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580

    CAS  PubMed  Google Scholar 

  • Ishii T (1997) Structure and function of feruloylated polysaccharides. Plant Sci 127: 111–127

    Article  CAS  Google Scholar 

  • Labuda IM, Goers SK, Keon KA (1994) Bioconversion process for the production of vanillin. Patent application US 5279950

  • Lesage-Meessen L, Delattre M, Haon M, Thibault JF, Ceccaldi BC, Brunerie P, Asther M (1996) A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J Biotechnol 50: 107–113

    Article  CAS  PubMed  Google Scholar 

  • Lesage-Meessen L, Lomascolo A, Bonnin E, Thibault JF, Buleon A, Roller M, Asther M, Record E, Ceccaldi BC, Asther M (2002) A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. Appl Biochem Biotechnol 102: 141–153

    Google Scholar 

  • Lindahl R (1992) Aldehyde dehydrogenases and their role in carcinogenesis. Crit Rev Biochem Mol Biol 27: 283–335

    CAS  PubMed  Google Scholar 

  • Mermod N, Lehrbach PR, Reineke W, Timmis KN (1984). Transcription of the TOL plasmid toluate catabolic pathway operon of Pseudomonas putida is determined by a pair of co-ordinately and positively regulated overlapping promoters. EMBO J 11: 2461–2466

    Google Scholar 

  • Molina L, Ramos C, Ronchel MC, Mølin S, Ramos JL (1998) Field release of biologically contained Pseudomonas putida strains with biodegradative potential. Appl Environ Microbiol 64: 2073–2078

    Google Scholar 

  • Muheim A, Lerch K (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 51: 456–461

    Article  CAS  Google Scholar 

  • Nusslein K, Maris D, Timmis KN, Dwyer DF (1992) Expression and transfer of engineered catabolic pathways harbored by Pseudomonas ssp. introduced into activated sludge microcosms. Appl Environ Microbiol 58: 3380–3386

    CAS  PubMed  Google Scholar 

  • Oosterveld A, Beldman G, Schols HA, Voragen AGJ (2000) Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. Carbohyd Res 328: 185–197

    Article  CAS  Google Scholar 

  • Overhage J, Priefert H, Rabenhorst J, Steinbüchel A (1999a) Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl Microbiol Biotechnol 52: 820–828

    PubMed  Google Scholar 

  • Overhage J, Priefert H, Steinbüchel A (1999b) Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199. Appl Environ Microbiol 65: 4837–4847

    PubMed  Google Scholar 

  • Priefert H, Overhage J, Steinbüchel A (1999) Identification and molecular characterization of the eugenol hydroxylase genes (ehyA/ehyB) of Pseudomonas sp. strain HR199. Arch Microbiol 172: 354–363

    Article  CAS  PubMed  Google Scholar 

  • Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56: 296–314

    PubMed  Google Scholar 

  • Ramos JL, Díaz E, Dowling D, Lorenzo V de, Mølin S, O'Gara F, Ramos C, Timmis KN (1994) The behavior of bacteria designed for biodegradation. Bio/Technology 12: 1349–1356

    CAS  Google Scholar 

  • Ramos JL, Duque E, Huertas MJ, Haïdour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177: 3911–3916

    CAS  PubMed  Google Scholar 

  • Ramos JL, Marqués S, Timmis KN (1997) Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu Rev Microbiol 51: 341–373

    Article  CAS  PubMed  Google Scholar 

  • Ronchel MC, Ramos C, Jensen LB, Mølin S, Ramos JL (1995) Construction and behavior of biologically contained bacteria for environmental applications in bioremediation. Appl Environ Microbiol 61: 2990–2994

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    PubMed  Google Scholar 

  • Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38: 209–222

    CAS  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983a) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Bio/Technology 1: 784–791

    CAS  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983b) Vector plasmids for in vivo and in vitro manipulations of gram-negative bacteria. In: Pühler A (ed) Molecular genetics of the bacteria-plant interaction. Springer, Berlin Heidelberg New York, pp 98–106

  • Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43: 159271

    Google Scholar 

  • Stegemann H, Francksen H, Macko V (1973) Potato proteins: genetic and physiological changes, evaluated by one or two-dimensional PAA-geltechniques. Z Naturforsch 28: 722–732

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant QLK3-2000-00170 from the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Priefert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaggenborg, R., Overhage, J., Steinbüchel, A. et al. Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Appl Microbiol Biotechnol 61, 528–535 (2003). https://doi.org/10.1007/s00253-003-1260-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1260-4

Keywords

Navigation