Skip to main content
Log in

Diversity, Antimicrobial Activity, and Biosynthetic Potential of Cultivable Actinomycetes Associated with Lichen Symbiosis

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Lichens are structured associations of a fungus with a cyanobacteria and/or green algae in a symbiotic relationship, which provide specific habitats for diverse bacterial communities, including actinomycetes. However, few studies have been performed on the phylogenetic relationships and biosynthetic potential of actinomycetes across lichen species. In the present study, a total of 213 actinomycetes strains were isolated from 35 lichen samples (22 lichen genera) collected in Yunnan Province, China. 16S rRNA gene sequence analysis revealed an unexpected level of diversity among these isolates, which were distributed into 38 genera, 19 families, and 9 orders within the Actinobacteria phylum. The detailed taxa of isolates had no clear relationship to the taxonomic affiliations of the associated lichens. To the best of our knowledge, this is the first report to describe the isolation of Actinophytocola, Angustibacter, Herbiconiux, Kibdelosporangium, Kineosporia, Kitasatospora, Nakamurella, Nonomuraea, Labedella, Lechevalieria, Lentzea, Schumannella, and Umezawaea species from lichens. At least 40 isolates (18.78%) are likely to represent novel actinomycetes taxa within 15 genera. In addition, all 213 isolates were tested for antimicrobial activity and screened for genes associated with secondary metabolite production to evaluate their biosynthetic potential. These results demonstrate that the lichens of Yunnan Province represent an extremely rich reservoir for the isolation of a significant diversity of actinomycetes, including novel species, which are potential source for discovering biologically active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395

    Article  CAS  PubMed  Google Scholar 

  2. Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural produce search and discovery. Trends Microbiol 15:491–499

    Article  CAS  PubMed  Google Scholar 

  3. Wagner M, Abdel-Mageed WM, Ebel R, Bull AT, Goodfellow M, Fiedler HP, Jaspars M (2014) Dermacozines H-J isolated from a deep-sea strain of Dermacoccus abyssi from Mariana Trench sediments. J Nat Prod 77:416–420

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W, Levenez F, Wang J, Xu X, Xiao L, Liang S, Zhang D (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841

    Article  CAS  PubMed  Google Scholar 

  5. Kim KH, Ramadhar TR, Beemelmanns C, Cao S, Poulsen M, Currieb CR, Clardy J (2014) Natalamycin A, an ansamycin from a termite-associated Streptomyces sp. Chem Sci 5:4333–4338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Janso JE, Carter GT (2010) Biosynthetic potential of phylogenetically unique endophytic actinomycetes from tropical plants. Appl Environ Microbiol 76:4377–4386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, Condron MAM, Teplow DB, Sears J, Maranta M, Hunter M, Weber B, Yaver D (2004) Coronamycins, peptide antibiotics produced by a verticillated Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150:785–793

    Article  CAS  PubMed  Google Scholar 

  9. Castillo U, Harper JK, Strobel GA, Sears J, Alesi K, Ford E, Lin J, Hunter M, Maranta M, Ge H, Yaver D, Jensen JB, Porter H, Robison R, Millar D, Hess WM, Condron M, Teplow D (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Letters 224:183–190

    Article  CAS  Google Scholar 

  10. Castillo UF, Browne L, Strobel G, Hess WM, Ezra S, Pacheco G, Ezra D (2007) Biologically active endophytic streptomycetes from Nothofagus spp. and other plants in Patagonia. Microb Ecol 53:12–19

    Article  PubMed  Google Scholar 

  11. Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA, Goodfellow M, Bull AT (2009) Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie Van Leeuwenhoek 95:121–133

    Article  PubMed  Google Scholar 

  12. Hong K, Gao AH, Xie QY, Gao H, Zhuang L, Lin HP, Yu HP, Yao XS, Goodfellow M, Ruan JS (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7:24–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gonzάlz I, Ayuso-Sacido A, Anderson A, Genilloud O (2005) Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol 54:401–415

    Article  Google Scholar 

  14. Parrot D, Antony-Babu S, Intertaglia L, Grube M, Tomasi S, Suzuki M (2015) Littoral lichens as a novel source of potentially bioactive actinobacteria. Sci Rep 5:15839. doi:10.1038/srep15839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies J, Wang H, Taylor T, Warabi K, Huang XH, Andersen RJ (2005) Uncialamycin, a new enediyne antibiotic. Org Lett 7:5233–5236

    Article  CAS  PubMed  Google Scholar 

  16. Williams DE, Davies J, Patrick BO, Bottriell H, Tarling T, Roberge M, Andersen RJ (2008) Cladoniamides A-G, tryptophan-derived alkaloids produced in culture by Streptomyces uncialis. Org Lett 10:3501–3504

    Article  CAS  PubMed  Google Scholar 

  17. Motohashi K, Takagi M, Yamamura H, Hayakawa M, Shin-ya K (2010) A new angucycline and a new butenolide isolated from lichen-derived Streptomyces spp. J Antibiot 63:545–548

    Article  CAS  PubMed  Google Scholar 

  18. Tehler A, Wedin M (2008) Systematics of lichenized fungi. In: Nash TH (ed) Progress in botany, vol 46. Cambridge University Press, Cambridge, pp. 336–352

    Google Scholar 

  19. Cardinale M, de Castro JV, Müller H, Berg G, Grube M (2008) In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol Ecol 66:63–71

    Article  CAS  PubMed  Google Scholar 

  20. Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 57:484–495

    Article  CAS  PubMed  Google Scholar 

  21. Grube M, Cardinale M, de Castro JV, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3:1105–1115

    Article  PubMed  Google Scholar 

  22. Hodkinson B, Lutzoni F (2009) A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis 49:163–180

    Article  CAS  Google Scholar 

  23. Bates ST, Cropsey GWG, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77:1309–1314

    Article  CAS  PubMed  Google Scholar 

  24. Phongsopitanun W, Matsumoto A, Inahashi Y, Kudo T, Mori M, Shiomi K, Takahashi Y, Tanasupawat S (2016) Actinoplanes lichenis sp. nov., isolated from lichen. Int J Syst Evol Microbiol 66:468–473

    Article  CAS  PubMed  Google Scholar 

  25. Cardinale M, Grube M, Berg G (2011) Frondihabitans cladoniiphilus sp. nov., an actinobacterium of the family Microbacteriaceae isolated from lichen, and emended description of the genus Frondihabitans. Int J Syst Evol Microbiol 61:3033–3038

    Article  CAS  PubMed  Google Scholar 

  26. Yamamura H, Ashizawa H, Nakagawa Y, Hamada M, Ishida Y, Otoguro M, Tamura T, Hayakawa M (2011) Actinomycetospora rishiriensis sp. nov., isolated from a lichen. Int J Syst Evol Microbiol 61:2621–2625

    Article  CAS  PubMed  Google Scholar 

  27. Yamamura H, Ashizawa H, Nakagawa Y, Hamada M, Ishida Y, Otoguro M, Tamura T, Hayakawa M (2011) Actinomycetospora iriomotensis sp. nov., a novel actinomycete isolated from a lichen sample. J Antibiot 64:289–292

    Article  CAS  PubMed  Google Scholar 

  28. Hirsch P, Mevs U, Kroppenstedt RM, Schumann P, Stackebrandt E (2004) Crytpoendolithic actinomycetes from antarctic sandstone: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Syst Appl Microbiol 27:166–174

    Article  CAS  PubMed  Google Scholar 

  29. An SY, Xiao T, Yokota A (2009) Leifsonia lichenia sp. nov., isolated from lichen in Japan. J Gen Appl Microbiol 55:339–343

    Article  CAS  PubMed  Google Scholar 

  30. Li B, Xie CH, Yokota A (2007) Nocardioides exalbidus sp. nov., a novel actinomycete isolated from lichen in Izu-Oshima Island, Japan. Actinomycetologica 21:22–26

    Article  Google Scholar 

  31. An S, Xiao T, Yokota A (2008) Schumannella luteola gen. nov., sp. nov., a novel genus of the family Microbacteriaceae. J Gen Appl Microbiol 54:253–258

    Article  CAS  PubMed  Google Scholar 

  32. Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7:285–295

    Article  CAS  PubMed  Google Scholar 

  33. Christiansen G, Dittmann E, Ordorika LV, Rippka R, Herdman M, Börner T (2001) Nonribosomal peptide synthase genes occur in most cyanobacterial genera as evidenced by their distribution in axenic strains of the PCC. Arch Microbiol 176:452–458

    Article  CAS  PubMed  Google Scholar 

  34. Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49:10–24

    Article  CAS  PubMed  Google Scholar 

  35. Ketela MM, Virpi S, Halo L, Hautala A, Hakala J, Mantsala P, Ylihonko K (1999) An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiol Lett 180:1–6

    Article  Google Scholar 

  36. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16

    Article  CAS  PubMed  Google Scholar 

  37. Anderson AS, Clark DJ, Gibbons PH, Sigmund JM (2002) The detection of diverse aminoglycoside phosphotransferases within natural populations of actinomycetes. J Ind Microbiol Biotechnol 29:60–69

    Article  CAS  PubMed  Google Scholar 

  38. Sigmund JM, Clark DC, Rainey FA, Anderson AS (2003) Detection of eubacterial 3-hydroxy-3-methylglutaryl coenzyme a reductases from natural populations of actinomycetes. Microb Ecol 46:106–112

    Article  CAS  PubMed  Google Scholar 

  39. Hwang YB, Lee MY, Park HJ, Han K, Kim ES (2007) Isolation of putative polyene-producing actinomycetes strains via PCR-based genome screening for polyene-specific hydroxylase genes. Process Biochem 42:102–107

    Article  CAS  Google Scholar 

  40. Biodiversity Committee of Chinese Academy of Sciences (2016) Catalogue of life china 2016 annual checklist edition. Science press, Beijing, China

  41. Jiang Y, Wang XY, Li GD, Li QY, Chen X, Wang LS, Li Y, Jiang CL (2015) Diversity and anti-microbial activities of actinomycetes associated with three species of lichens. Am J BioSci 3:171–177

    Article  CAS  Google Scholar 

  42. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  43. Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245

    Article  CAS  PubMed  Google Scholar 

  44. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptomonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363

    Article  CAS  PubMed  Google Scholar 

  45. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  46. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  47. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  50. Bergquist PR, Bedford JJ (1978) The incidence of antibacterial activity in marine demospongiae; systematic and geographic considerations. Mar Biol 46:215–221

    Article  Google Scholar 

  51. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence-analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  52. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

    Article  CAS  PubMed  Google Scholar 

  53. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP (2013) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418

    Article  CAS  PubMed  Google Scholar 

  54. Stach JE, Maldonado LA, Masson DG, Ward AC, Goodfellow M, Bull AT (2003) Statistical approaches for estimating actinobacterial diversity in marine sediments. Appl Environ Microbiol 69:6189–6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Robert DS, George WC, John JD, Walter H, John REH, Joseph RV, Lee W, Kenneth MS (1985) Aridicins, novel glycopeptide antibiotics II. Isolation and charactrization. J Antibiot 38:555–560

    Article  Google Scholar 

  56. Shearer MC, Giovenella AJ, Grappel SF, Hedde RD, Mehta RJ, Oh YK, Pan CH, Pitkin DH, Nisbet LJ (1986) Kibdelins, novel glycopeptide antibiotics I. Discovery, production, and biological evaluation. J Antibiot 39:1386–1394

    Article  CAS  PubMed  Google Scholar 

  57. Choi CW, Choi JS, Ko YK, Kim CJ, Kim YH, Oh JS, Ryu SY, Yon GH (2014) A new tricyclic undecose nucleoside from Streptomyces scopuliridis RB72. Bull Kor Chem Soc 45:1215–1217

    Article  Google Scholar 

  58. Farris MH, Duffy C, Findlay RH, Olson JB (2011) Streptomyces scopuliridis sp. nov., a bacteriocin-producing soil streptomycete. Int J Syst Evol Microbiol 61:2112–2116

    Article  PubMed  PubMed Central  Google Scholar 

  59. Song Y, Li Q, Liu X, Chen Y, Zhang Y, Sun A, Zhang W, Zhang J, Ju J (2014) Cyclic hexapeptides from the deep south china sea-derived Streptomyces scopuliridis SCSIO zj46 active against pathogenic Gram-positive bacteria. J Nat Prod 77:1937–1941

    Article  CAS  PubMed  Google Scholar 

  60. David M, Pascal B (2015) Polypeptides isolated from Brevibacterium aurantiacum and their use for the treatment of cancer. USA Patent: US9,051,562 B2

  61. Zhou X, Huang H, Li J, Song Y, Jiang R, Liu J, Zhang S, Hua Y, Ju J (2014) New anti-infective cycloheptadepsipeptide congeners and absolute stereochemistry from the deep sea-derived Streptomyces drozdowiczii SCSIO 10141. Tetrahedron 70:7795–7801

    Article  CAS  Google Scholar 

  62. Aoyagi T, Suda H, Uotani K, Kojima F, Aoyama T, Horiguchi K, Hamada M, Takeuchi T (2005) Nagstatin, a new inhibitor of N-acetyl-β-d-glucosaminidase, produced by Streptomyces amakusaensis MG846-fF3, taxonomy, production, isolation, physico-chemical properties and biological activities. J Antibiot 15:374–388

    Google Scholar 

  63. Haneda K, Shinose M, Seino A, Tabata N, Tomoda H, Iwai Y, Ōmura S (1994) Cytosaminomycins, new anticoccidial agents produced by Streptomyces sp. KO-8119 I. Taxonomy, production, isolation and physico-chemical and biological properties. J Antibiot 47:756–761

    Article  Google Scholar 

  64. Deushi T, Iwasaki A, Kamiya K, Mizoguchi T, Nakayama M, Itoh H, Mori T (1979) New aminoglycoside antibiotics, sannamycin. J Antibiot 32:1061–1065

    Article  CAS  PubMed  Google Scholar 

  65. Yang SX, Gao JM, Zhang AL, Laatsch H (2011) Sannastatin, a novel toxic macrolactam polyketide glycoside produced by actinomycete Streptomyces sannanensis. Bioorg Med Chem Lett 21:3905–3908

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Zheng D, Li J, Han L, Cui X, Lang L, Li M, Wang Z, Zhao J, Huang X (2009) Sannanine, a new cytotoxic alkaloid from Streptomyces sannanensis. J Antibiot 62:647–648

    Article  CAS  PubMed  Google Scholar 

  67. Aroonsri A, Kitani S, Ikeda H, Nihira T (2012) Kitasetaline, a novel β-carboline alkaloid from Kitasatospora setae NBRC 14216T. J Biosci Bioeng 114:56–58

    Article  CAS  PubMed  Google Scholar 

  68. Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85:7972–7976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ōmura S, Otoguro K, Nishikiori T, Oiwa R, Iwai Y (1981) Setamycin, a new antibiotic. J Antibiot 34:1253–1256

    Article  PubMed  Google Scholar 

  70. Terekhova LP, Sadikova OA, Preobrazhenskaia TP (1977) New species of Actinoplanes cyanea sp. nov. and its antagonistic properties. Antibiotiki 22:1059–1063

    CAS  PubMed  Google Scholar 

  71. An DS, Im WT, Yoon MH (2008) Microlunatus panaciterrae sp. nov., a β-glucosidase-producing bacterium isolated from soil in a ginseng field. Int J Syst Evol Microbiol 58:2734–2738

    Article  CAS  PubMed  Google Scholar 

  72. Singh SB, Garrity GM, Genillourd O, Lingham RB, Martin I, NallinOmstead M, Silverman KC, Zink DL (1997) Inhibitor compounds of farnesyl-protein transferase and chemotherapeutic compositions containing the same, produced by strain ATCC 55532. USA Patent 5:627,057

    Google Scholar 

  73. Cheenpracha S, Vidor NB, Yoshida WY, Davies J, Chang LC (2010) Coumabiocins A-F, aminocoumarins from an organic extract of Streptomyces sp. L-4-4. J Nat Prod 73:880–884

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grant nos. 31460005, 31270001, 81573327, 31170023, 31400022, 31370069). We thank graduate Xin Ye (Yunnan University of Traditional Chinese Medicine, China) for his help in lichen collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Jiang or Li Han.

Electronic supplementary material

.

ESM 1

(DOCX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Jiang, Y., Wang, X. et al. Diversity, Antimicrobial Activity, and Biosynthetic Potential of Cultivable Actinomycetes Associated with Lichen Symbiosis. Microb Ecol 74, 570–584 (2017). https://doi.org/10.1007/s00248-017-0972-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0972-4

Keywords

Navigation