Skip to main content
Log in

Whole-Cell MALDI-TOF Mass Spectrometry and Multilocus Sequence Analysis in the Discrimination of Pseudomonas stutzeri Populations: Three Novel Genomovars

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Pseudomonas stutzeri is a widely distributed species with very high genetic diversity and metabolic capacities, occupying many diverse ecological niches. A collection of 229 P. stutzeri strains isolated from different habitats and geographical locations has been previously characterised phylogenetically by rpoD gene sequencing analysis and in the present study 172 of them phenotypically by whole-cell MALDI-TOF mass spectrometry. Fifty-five strains were further analysed by multilocus sequencing analysis to determine the phylogenetic population structure. Both methods showed coherence in strain grouping; 226 strains were allocated in the 18 genomovars known presently. The remaining three strains are proposed as references for three novel genomovars in the species. The correlation and usefulness of sequence-based phylogenetic analysis and whole-cell MALDI-TOF mass spectrometry, which are essential for autoecological studies in microbial ecology, is discussed for the differentiation of P. stutzeri populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennasar A, Rosselló-Mora R, Lalucat J, Moore ER (1996) 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int J Syst Bacteriol 46:200–205

    Article  CAS  PubMed  Google Scholar 

  2. Bennasar A, Guasp C, Lalucat J (1998) Molecular methods for the detection and identification of Pseudomonas stutzeri in pure culture and environmental samples. Microb Ecol 35:22–33

    Article  CAS  PubMed  Google Scholar 

  3. Brunet-Galmés I, Busquets A, Peña A, Gomila M, Nogales B, García-Valdés E, Lalucat J, Bennasar A, Bosch R (2012) Complete genome sequence of the naphthalene-degrading bacterium Pseudomonas stutzeri AN10 (CCUG 29243). J Bacteriol 194:6642–6643

    Article  PubMed Central  PubMed  Google Scholar 

  4. Busquets A, Peña A, Gomila M, Bosch R, Nogales B, García-Valdés E, Lalucat J, Bennasar A (2012) Genome sequence of Pseudomonas stutzeri strain JM300 (DSM 10701), a soil isolate and model organism for natural transformation. J Bacteriol 194:5477–5478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Caraux G, Pinloche S (2005) Permutmatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21:1280–1281

    Article  CAS  PubMed  Google Scholar 

  6. Cladera AM, Bennasar A, Barceló M, Lalucat J, García-Valdés E (2004) Comparative genetic diversity of Pseudomonas stutzeri genomovars, clonal structure, and phylogeny of the species. J Bacteriol 186:5239–5248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cladera AM, García-Valdés E, Lalucat J (2006) Genotype versus phenotype in the circumscription of bacterial species: the case of Pseudomonas stutzeri and Pseudomonas chloritidismutans. Arch Microbiol 184:353–361

    Article  CAS  PubMed  Google Scholar 

  8. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.0). Cladistics 5:164–166

    Google Scholar 

  9. García-Valdés E, Mulet M, Lalucat J (2010) Insights into the life styles of Pseudomonas stutzeri. In: Ramos JL, Filloux A (eds) Pseudomonas. Volume 6: molecular microbiology, infection and biodiversity. Springer, New York, pp 177–198

    Chapter  Google Scholar 

  10. Guasp C, Moore ER, Lalucat J, Bennasar A (2000) Utility of internally transcribed 16S–23S rDNA spacer regions for the definition of Pseudomonas stutzeri genomovars and other Pseudomonas species. Int J Syst Evol Microbiol 50:1629–1639

    Article  CAS  PubMed  Google Scholar 

  11. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9pp

    Google Scholar 

  12. Holmes B (1986) Identification and distribution of Pseudomonas stutzeri in clinical material. J Appl Bacteriol 60:401–411

    Article  CAS  PubMed  Google Scholar 

  13. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Chapter  Google Scholar 

  14. Kallow W, Erhard M, Shah HN, Raptakis E, Welker M (2010) MALDITOF MS for microbial identification: years of experimental development to an established protocol. In: Shah HN, Gharbia SE, Encheva V (eds) Mass spectrometry for microbial proteomics. Wiley, London, pp 255–277

    Chapter  Google Scholar 

  15. Kaneko H, Inoue A, Horikoshi K (2000) Effects of hydrostatic pressure and temperature on growth and lipid composition of the inner membrane of barotolerant Pseudomonas sp. BT1 isolated from deep sea. Biosci Biotechnol Biochem 64:72–79

    Article  CAS  PubMed  Google Scholar 

  16. Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70:510–547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Marmur J (1961) A procedure for the isolation of DNA from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  18. Metcalf WW, Wolfe RS (1998) Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. J Bacteriol 180:5547–5558

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  20. Mulet M, Gomila M, Gruffaz C, Meyer JM, Palleroni NJ, Lalucat J, García-Valdés E (2008) Phylogenetic analysis and siderotyping as useful tools in the taxonomy of Pseudomonas stutzeri: description of a novel genomovar. Int J Syst Evol Microbiol 58:2309–2315

    Article  CAS  PubMed  Google Scholar 

  21. Mulet M, Bennasar A, Lalucat J, García-Valdés E (2009) An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes 23:140–147

    Article  CAS  PubMed  Google Scholar 

  22. Mulet M, Lalucat J, García-Valdés E (2010) DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530

    CAS  PubMed  Google Scholar 

  23. Mulet M, David Z, Nogales B, Bosch R, Lalucat J, García-Valdés E (2011) Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill. Appl Environ Microbiol 77:1076–1085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J, García-Valdés E (2012) Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas. Syst Appl Microbiol 35:455–464

    Article  CAS  PubMed  Google Scholar 

  25. Munoz R, López-López A, Urdiain M, Moore ERB, Rosselló-Móra R (2011) Evaluation of matrix-assisted laser desorption ionization-time of flight whole cell profiles for assessing the cultivable diversity of aerobic and moderately halophilic prokaryotes thriving in solar saltern sediments. Syst Appl Microbiol 34:69–75

    Article  CAS  PubMed  Google Scholar 

  26. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  27. Palleroni NJ, Doudoroff M, Stanier RY, Solanes RE, Mandel M (1970) Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. J Gen Microbiol 60:215–231

    Article  CAS  PubMed  Google Scholar 

  28. Parkinson N, Bryant R, Bew J, Elphinstone J (2011) Rapid phylogenetic identification of members of the Pseudomonas syringae species complex using the rpoD locus. Plant Pathol 60:338–344

    Article  CAS  Google Scholar 

  29. Peña A, Busquets A, Gomila M, Bosch R, Nogales B, García-Valdés E, Lalucat J, Bennasar A (2012) Draft genome of Pseudomonas stutzeri strain ZoBell (CCUG 16156), a marine isolate and model organism for denitrification studies. J Bacteriol 194:1277–1278

    Article  PubMed Central  PubMed  Google Scholar 

  30. Romanenko LA, Uchino M, Falsen E, Lysenko AM, Zhukova NV, Mikhailov VV (2005) Pseudomonas xanthomarina sp. nov., a novel bacterium isolated from marine ascidian. J Gen Appl Microbiol 51:65–71

    Article  CAS  PubMed  Google Scholar 

  31. Rosselló R, García-Valdés E, Lalucat J, Ursing J (1991) Genotypic and phenotypic diversity of Pseudomonas stutzeri. Syst Appl Microbiol 14:150–157

    Article  Google Scholar 

  32. Rosselló-Mora RA, Lalucat J, Dott W, Kämpfer P (1994) Biochemical and chemotaxonomic characterization of Pseudomonas stutzeri genomovars. J Appl Microbiol 76:226–233

    Google Scholar 

  33. Rosselló-Mora RA, Lalucat J, Moore ERB (1996) Strain JM300 represents a new genomovar within Pseudomonas stutzeri. System Appl Microbiol 19:596–599

    Article  Google Scholar 

  34. Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175

    Article  CAS  PubMed  Google Scholar 

  35. Santos SR, Ochman H (2004) Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 6:754–759

    Article  CAS  PubMed  Google Scholar 

  36. Scotta C, Bennasar A, Moore ER, Lalucat J, Gomila M (2011) Taxonomic characterisation of ceftazidime-resistant Brevundimonas isolates and description of Brevundimonas faecalis sp. nov. Syst Appl Microbiol 34:408–413

    Article  CAS  PubMed  Google Scholar 

  37. Scotta C, Mulet M, Sánchez D, Gomila M, Ramírez A, Bennasar A, García-Valdés E, Holmes B, Lalucat J (2012) Identification and genomovar assignation of clinical strains of Pseudomonas stutzeri. Eur J Clin Microbiol Infect Dis 31:2133–2139

    Article  CAS  PubMed  Google Scholar 

  38. Sepulveda-Torres LC, Zhou JZ, Guasp C, Lalucat J, Knaebel D, Plank JL, Criddle CS (2001) Pseudomonas sp. strain KC represents a new genomovar within Pseudomonas stutzeri. Int J Syst Evol Microbiol 51:2013–2019

    Article  CAS  PubMed  Google Scholar 

  39. Sikorski J, Möhle M, Wackernagel W (2002) Identification of complex composition, strong strain diversity and directional selection in local Pseudomonas stutzeri populations from marine sediment and soils. Environ Microbiol 4:465–476

    Article  CAS  PubMed  Google Scholar 

  40. Sikorski J, Lalucat J, Wackernagel W (2005) Genomovars 11 to 18 of Pseudomonas stutzeri identified among isolates from soil and marine sediment. Int J Syst Evol Microbiol 55:1767–1770

    Article  CAS  PubMed  Google Scholar 

  41. Song B, Palleroni NJ, Häggblom M (2000) Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66:3446–3453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271

    Article  CAS  PubMed  Google Scholar 

  43. Takami H, Kobata K, Nagahama T, Kobayashi H, Inoue A, Horikoshi K (1999) Biodiversity in deep-sea sites located near the south part of Japan. Extremophiles 3:97–102

    Article  CAS  PubMed  Google Scholar 

  44. Tamegai H, Li L, Masui N, Kato C (1997) A denitrifying bacterium from the deep sea at 11,000-m depth. Extremophiles 1:207–211

    Article  CAS  PubMed  Google Scholar 

  45. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Welker M, Moore ERB (2011) Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 34:2–11

    Article  CAS  PubMed  Google Scholar 

  48. Wilson K (1987) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 241–242

    Google Scholar 

  49. Yamamoto S, Ksai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394

    Article  CAS  PubMed  Google Scholar 

  50. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R (1998) Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186

    Article  CAS  PubMed  Google Scholar 

  51. ZoBell CE, Upham HC (1944) A list of marine bacteria including description of sixty species. Bull Scripps Inst Oceanogr 5:239–292

    Google Scholar 

Download references

Acknowledgements

C.S. was supported by a grant from the Government of the Balearic Islands (FSE cofunding) and M.G. by a “Juan de la Cierva” contract from the Spanish MINECO. Financial support was obtained from the Spanish MINECO through projects CGL2011-24318 and Consolider CSD2009-00006, as well as funds for competitive research groups from the Government of the Balearic Islands (the last two funds with FEDER cofunding). We thank J. Sikorski and B. Holmes for supplying strains and to J. F. González and R. M. Gomila for their technical assistance in the MALDI-TOF analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena García-Valdés.

Additional information

Claudia Scotta and Margarita Gomila contributed equally to this paper

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 480 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scotta, C., Gomila, M., Mulet, M. et al. Whole-Cell MALDI-TOF Mass Spectrometry and Multilocus Sequence Analysis in the Discrimination of Pseudomonas stutzeri Populations: Three Novel Genomovars. Microb Ecol 66, 522–532 (2013). https://doi.org/10.1007/s00248-013-0246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0246-8

Keywords

Navigation