Skip to main content
Log in

Analysis of the Attached Microbial Community on Mucilaginous Cyanobacterial Aggregates in the Eutrophic Lake Taihu Reveals the Importance of Planctomycetes

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The phylogenetic diversity of the microbial community assemblage of the carpet-like mucilaginous cyanobacterial blooms in the eutrophic Lake Taihu was investigated. 16S ribosomal DNA clone libraries produced from the DNA of cyanobacterial assemblages that had been washed to remove unattached bacteria contained only cyanobacteria. However, a further treatment which included grinding the freeze-dried material to physically detach cells followed by the removal of larger cells by filtration allowed us to detect a large variety of bacteria within the cyanobacterial bloom community. Interestingly, the dominant members of the microbial community were Planctomycetes followed by CytophagaFlavobacteriumBacteroides (CFB), Betaproteobacteria, and Gammaproteobacteria. The analysis of the 16S ribosomal DNA clone libraries made from enrichment culture revealed much higher phylogenetic diversity of bacteria. Dominant bacterial groups in the enrichment system were identified as members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria subdivisions, CFB group, and Planctomycetes. In addition, the clone libraries constructed from Planctomycetes-specific 16S ribosomal RNA primers also verified that the enrichment allowed a diversity of Planctomycetes to proliferate, although the community composition was altered after enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bengtsson MM, Ovreas L (2010) Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol 10:26

    Article  Google Scholar 

  2. Berendt RF (1981) Influence of blue-green algae (cyanobacteria) on survival of Legionella pneumophila in aerosols. Infect Immun 32:690–692

    PubMed  CAS  Google Scholar 

  3. Berg KA, Lyra C, Sivonen K, Paulin L, Suomalainen S, Tuomi P, Rapala J (2009) High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J 3:314–325

    Article  PubMed  CAS  Google Scholar 

  4. Briee C, Moreira D, Lopez-Garcia P (2007) Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Res Microbiol 158:213–227

    Article  PubMed  CAS  Google Scholar 

  5. Delong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  6. De Wever A, Muylaert K, Van der Gucht K, Pirlot S, Cocquyt C, Descy JP, Plisnier PD, Vyverman W (2005) Bacterial community composition in Lake Tanganyika: vertical and horizontal heterogeneity. Appl Environ Microbiol 71:5029–5037

    Article  PubMed  Google Scholar 

  7. Eiler A, Bertilsson S (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6:1228–1243

    Article  PubMed  Google Scholar 

  8. Elshahed MS, Youssef NH, Luo QW, Najar FZ, Roe BA, Sisk TM, Bühring SI, Hinrichs KU, Krumholz LR (2007) Phylogenetic and metabolic diversity of Planctomycetes from anaerobic, sulfide- and sulfur-rich Zodletone Spring, Oklahoma. Appl Environ Microbiol 73:4707–4716

    Article  PubMed  CAS  Google Scholar 

  9. Elshahed MS, Youssef NH, Spain AM, Sheik C, Najar FZ, Sukharnikov LO, Roe BA, Davis JP, Schloss PD, Krumholz LR (2008) Novelty and uniqueness patterns of rare members of the soil biosphere. Appl Environ Microbiol 74:5422–5428

    Article  PubMed  CAS  Google Scholar 

  10. Frangeul L, Quillardet P, Castets AM, Humbert JF, Matthijs HC, Cortez D, Tolonen A, Zhang CC, Gribaldo S, Kehr JC, Zilliges Y, Ziemert N, Becker S, Talla E, Latifi A, Billault A, Lepelletier A, Dittmann E, Bouchier C, de Marsac NT (2008) Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics 9:274

    Article  PubMed  Google Scholar 

  11. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C (2009) Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA 106:22427–22432

    Article  PubMed  CAS  Google Scholar 

  12. Giovannoni SJ, Delong EF, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726

    PubMed  CAS  Google Scholar 

  13. Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100:8298–8303

    Article  PubMed  Google Scholar 

  14. Guo L (2007) Doing battle with the green monster of Lake Taihu. Science 317:116

    Article  Google Scholar 

  15. Havens KE (2007) Cyanobacteria blooms: effects on aquatic ecosystems, vol. 619. In: Hudnell KH (ed) Cyanobacterial harmful algal blooms: state of the science and research. Springer, New York, pp 675–732

    Google Scholar 

  16. Hovanec TA, Taylor LT, Blakis A, Delong EF (1998) Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria. Appl Environ Microbiol 64:258–264

    PubMed  CAS  Google Scholar 

  17. Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042

    Article  PubMed  CAS  Google Scholar 

  18. Jenkins O, Byrom D, Jones D (1987) Methylophilus: a new genus of methanol-utilizing bacteria. Int J Syst Bacteriol 37:446–448

    Article  Google Scholar 

  19. Kolmonen E, Sivonen K, Rapala J, Haukka K (2004) Diversity of cyanobacteria and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas, Finland. Aquat Microb Ecol 36:201–211

    Article  Google Scholar 

  20. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrant E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  21. Li H, Xing P, Wu QL (2012) Characterization of the bacterial community composition in a hypoxic zone induced by Microcystis blooms in Lake Taihu, China. FEMS Microbiol Ecol 79:773–784

    Article  PubMed  CAS  Google Scholar 

  22. Li N, Zhang L, Li F, Wang Y, Zhu Y, Kang H, Wang S, Qin S (2011) Metagenome of microorganisms associated with the toxic cyanobacteria Microcystis aeruginosa analyzed using the 454 sequencing platform. Chinese J Oceanol Limnol 29:505–513

    Article  Google Scholar 

  23. Lin B, Hyacinthe C, Bonneville S, Braster M, Van Cappellen P, Roling WF (2007) Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Environ Microbiol 9:1956–1968

    Article  PubMed  CAS  Google Scholar 

  24. McCarthy MJ, Lavrentyev PJ, Yang L, Zhang L, Chen Y, Boqiang Q, Gardner WS (2007) Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China). Hydrobiologia 581:195–207

    Article  CAS  Google Scholar 

  25. Morris RM, Longnecker K, Giovannoni SJ (2006) Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ Microbiol 8:1361–1370

    Article  PubMed  CAS  Google Scholar 

  26. Nalin R, Simonet P, Vogel TM, Normand P (1999) Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49:19–23

    Article  PubMed  Google Scholar 

  27. Neufeld JD, Boden R, Moussard H, Schafer H, Murrell JC (2008) Substrate-specific clades of active marine methylotrophs associated with a phytoplankton bloom in a temperate coastal environment. Appl Environ Microbiol 74:7321–7328

    Article  PubMed  CAS  Google Scholar 

  28. Niu Y, Shen H, Chen J, Xie P, Yang X, Tao M, Ma ZM, Qi M (2011) Phytoplankton community succession shaping bacterioplankton community composition in Lake Taihu, China. Water Res 45:4169–4182

    PubMed  CAS  Google Scholar 

  29. Otsuka S, Suda S, Li R, Matsumoto S, Watanabe MM (2000) Morphological variability of colonies of Microcystis morphospecies in culture. J gen appl microbial 46:39–50

    Article  CAS  Google Scholar 

  30. Paerl HW (1996) Microscale physiological and ecological studies of aquatic cyanobacteria: macroscale implications. Microsc Res Technol 33:47–72

    Article  CAS  Google Scholar 

  31. Paerl HW, Xu H, McCarthy MJ, Zhu G, Qin B, Li Y, Gardner WS (2011) Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res 45:1973–1983

    Article  PubMed  CAS  Google Scholar 

  32. Pedros-Alio C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263

    Article  PubMed  CAS  Google Scholar 

  33. Pollet T, Tadonléké RD, Humbert JF (2011) Comparison of primer sets for the study of Planctomycetes communities in lentic freshwater ecosystems. Environ Microbiol Rep 3:254–261

    Article  CAS  Google Scholar 

  34. Pope P, Patel B (2008) Metagenomic analysis of a freshwater toxic cyanobacteria bloom. Microbiol Ecol 64:9–27

    Article  CAS  Google Scholar 

  35. Qin B, Zhu G, Gao G, Zhang Y, Li W, Paerl HW, Carmichael WW (2010) A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ Manage 45:105–112

    Article  PubMed  Google Scholar 

  36. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  37. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  38. Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  PubMed  CAS  Google Scholar 

  39. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  PubMed  CAS  Google Scholar 

  40. Stadtländer C (2007) Scanning electron microscopy and transmission electron microscopy of Mollicutes: challenges and opportunities. In: Méndez-Vilas A, Díaz J (eds) Modern research and educational topics in microscopy. Formatex, Badajoz, pp 122–131

    Google Scholar 

  41. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  42. Tang KW, Dziallas C, Grossart HP (2011) Zooplankton and aggregates as refuge for aquatic bacteria: protection from UV, heat and ozone stresses used for water treatment. Environ Microbiol 13:378–390

    Article  PubMed  CAS  Google Scholar 

  43. Tao M, Xie P, Chen J, Qin BQ, Zhang DW, Niu Y, Zhang M, Wang Q, Wu LY (2012) Use of a generalized additive model to investigate key abiotic factors affecting microcystin cellular quotas in heavy bloom areas of Lake Taihu. PLoS One 7:e32020

    Article  PubMed  CAS  Google Scholar 

  44. Tison DL, Pope DH, Cherry WB, Fliermans CB (1980) Growth of Legionella pneumophila in association with blue-green algae (cyanobacteria). Appl Environ Microbiol 39:456–459

    PubMed  CAS  Google Scholar 

  45. Tuomainen J, Hietanen S, Kuparinen J, Martikainen PJ, Servomaa K (2006) Community structure of the bacteria associated with Nodularia sp. (Cyanobacteria) aggregates in the Baltic Sea. Microbial Ecol 52:513–522

    Article  CAS  Google Scholar 

  46. Urakami T, Sasaki J, Suzuki KI, Komagata K (1995) Characterization and description of Hyphomicrobium denitrificans sp. nov. Int J Syst Bacteriol 45:528–532

    Article  Google Scholar 

  47. Visser PM, Ibelings BW, Van der Veer B, Koedood J, Mur LR (1996) Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, The Netherlands. Freshwater Biol 36:435–450

    Article  Google Scholar 

  48. Wang L, Priscu JC (1994) Stimulation of aquatic bacterial activity by cyanobacteria. Hydrobiologia 277:145–158

    Article  Google Scholar 

  49. Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites: a short review. Toxicol Appl Pharmacol 203:201–218

    Article  PubMed  CAS  Google Scholar 

  50. Wilhelm SW, Farnsleya SE, LeCleira GR, Laytonb AC, Satchwellc MF, DeBruynd JM, Boyerc GL, Zhu G, Paerl HW (2011) The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. Harmful Algae 10:207–221

    Article  CAS  Google Scholar 

  51. Worm J, Søndergaard M (1998a) Alcian Blue-stained particles in a eutrophic lake. J Plankton Res 20:179–186

    Article  Google Scholar 

  52. Worm J, Sondergaard M (1998b) Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). Aquat Microb Ecol 14:19–28

    Article  Google Scholar 

  53. Xing P, Kong FX (2007) Intra-habitat heterogeneity of environmental factors regulating bacterioplankton community composition in Lake Taihu, China. Aquat Microb Ecol 46:113–122

    Article  Google Scholar 

  54. Xing P, Li H, Liu Q, Zheng J (2012) Composition of the archaeal community involved in methane production during the decomposition of Microcystis blooms in the laboratory. Can J Microbiol 58:1153–1158

    Article  PubMed  CAS  Google Scholar 

  55. Yagi O, Hashimoto A, Iwasaki K, Nakajima M (1999) Aerobic degradation of 1,1,1-trichloroethane by Mycobacterium spp. isolated from soil. Appl Environ Microbiol 65:4693–4696

    PubMed  CAS  Google Scholar 

  56. Zhang P, Chen Y, Zhou Q, Zheng X, Zhu X, Zhao Y (2010) Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology. Environ Sci Technol 44:9343–9348

    Article  PubMed  CAS  Google Scholar 

  57. Zhang X, Chen C, Ding J, Hou A, Li Y, Niu Z, Su X, Xu Y, Laws EA (2010) The 2007 water crisis in Wuxi, China: analysis of the origin. J Hazard Mater 182:130–135

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science and Technology Major Project of China (2012ZX07101-010), the National Natural Science Foundation of China (31100021 and 51079139), the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-314), Open Research Foundation of Nanjing Institute of Geography and Limnology (NIGLAS2010QD12), Natural Science Foundation of Jiangsu Province of China (SBK201122829), and Chinese Academy of Sciences Visiting Professorships for Senior International Scientists (2011T1Z37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Long Jiang.

Supporting Information

Below is the link to the electronic supplementary material.

Table S1

The nearest neighbors of 16S rRNA gene sequences retrieved from the physically-detached sample and enrichment sample. The clones from physically-detached sample were marked with yellow. The sequence identity was based on gapped-BLAST analysis. Accession number of the nearest neighbor was marked in parenthesis. Isolation environment of the nearest neighbor was retrieved from GenBank database. (DOC 246 kb)

Fig. S1

Enrichment microcosm at the beginning of experiments (A) and at the end of experiments (B). (DOC 1059 kb)

Fig. S2

Neighbour-joining tree of Alphaproteobacteria 16S rRNA gene sequences obtained from the PD library and ER library. (JPEG 90 kb)

High resolution image (TIFF 593 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, HY., Yan, Zs., Wang, AJ. et al. Analysis of the Attached Microbial Community on Mucilaginous Cyanobacterial Aggregates in the Eutrophic Lake Taihu Reveals the Importance of Planctomycetes . Microb Ecol 66, 73–83 (2013). https://doi.org/10.1007/s00248-013-0224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0224-1

Keywords

Navigation