Skip to main content
Log in

Association Between Environmental Microbiota and Indigenous Bacteria Found in Hemolymph, Extrapallial Fluid and Mucus of Anodonta cygnea (Linnaeus, 1758)

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bivalves filter and accumulate large numbers of microorganisms present in the harvesting water. A complete understanding of the balance between Anodonta cygnea and the microbiota present in their surrounding environment remains incomplete. Therefore, the aim of this study was to quantify and identify the indigenous bacteria in the biological fluids of A. cygnea collected from Mira Lagoon in northern Portugal. The results showed Vibrio metschnikovii and Aeromonas sobria as the dominant groups. The median for total bacteria from mucus was 3.1 × 103 CFU g−1, whereas the range in means from fluids was 1.5 × 102 to 6.5 × 102 CFU ml−1. During the experimental work, Escherichia coli and enterococci were not detected in healthy A. cygnea. However, the periodic detection of E. coli and enterococci in Mira lagoon revealed its presence in the water. Our observations suggest that A. cygnea has the ability to filter and eliminate E. coli, present in the surrounding environment, through an active phagocytic process conducted by hemolymph circulating cells, the hemocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  1. Beleneva IA, Zhukova NV, Maslennikova EF (2003) Comparative study of microbial communities from cultured and natural populations of the mussel Mytilus trossulus in Peter the Great Bay. Microbiology 72(4):472–477

    Article  CAS  Google Scholar 

  2. Bernard I, Schafer H, Joux F, Courties C, Muyzer G, Lebaron P (2000) Genetic diversity of total, active and culturable marine bacteria in coastal sea water. Aquat Microb Ecol 23:1–11

    Article  Google Scholar 

  3. Canesi L, Pruzzo C, Tarsi R, Gallo G (2001) Surface interactions between Escherichia coli and hemocytes of the Mediterranean mussel Mytilus galloprovincialis Lam. leading to efficient bacterial clearance. Appl Environ Microbiol 67:464–468

    Article  CAS  PubMed  Google Scholar 

  4. Cao R, Xue C, Liu Q (2009) Changes in microbial flora of Pacific oysters (Crassostrea gigas) during refrigerated storage and its shelf-life extension by chitosan. Int J Food Microbiol 131:272–276

    Article  CAS  PubMed  Google Scholar 

  5. Cavallo RA, Acquaviva MI, Stabili L (2009) Culturable heterotrophic bacteria in seawater and Mytilus galloprovincialis from a Mediterranean area (Northern Ionian Sea–Italy). Environ Monit Assess 149:465–475

    Article  CAS  PubMed  Google Scholar 

  6. Colwell RR, Liston J (1960) Microbiology of shellfish: bacteriological study of the natural flora of Pacific oysters (Crassostrea gigas). Appl Microbiol 8:104–109

    CAS  PubMed  Google Scholar 

  7. Corrêa AA, Albarnaz JD, Moresco V, Poli CR, Teixeira AL, Simões CMO, Barardi CRM (2007) Depuration dynamics of oysters (Crassostrea gigas) artificially contaminated by Salmonella enterica serovar Typhimurium. Mar Environ Res 63:479–489

    Article  Google Scholar 

  8. Geist J, Kuehn R (2008) Host-parasite interactions in oligotrophic stream ecosystems: the roles of life history strategy and ecological niche. Mol Ecol 17(4):997–1008

    Article  PubMed  Google Scholar 

  9. Geist J, Kuehn R (2005) Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations: implications for conservation and management. Mol Ecol 14:425–439

    Article  CAS  PubMed  Google Scholar 

  10. Grizzle JM, Brunner CJ (2009) Infectious diseases of freshwater mussels and other freshwater bivalve mollusks. Rev Fish Sci 17(4):425–467

    Article  Google Scholar 

  11. Kautsky N (1981) On the trophic role of the blue mussel (Mytilus edulis L.) in a Baltic coastal ecosystem and the fate of the organic matter produced by the mussels. Kiel Meeresforsch Sonderh 5:454–461

    Google Scholar 

  12. Olafsen JA, Mikkelsen HV, Giaever HM, Hansen GH (1993) Indigenous bacteria in hemolymph and tissues of marine bivalves at low temperatures. Appl Environ Microbiol 59:1848–1854

    CAS  PubMed  Google Scholar 

  13. Prieur D, Mevel G, Nicolas JL, Plusquellec A, Vigneulle M (1990) Interactions between bivalve molluscs and bacteria in the marine environment. Oceanogr Mar Biol Annu Rev 28:277–352

    Google Scholar 

  14. Prins TC, Smaal AC, Dame RF (1998) A review of the feedbacks between bivalve grazing and ecosystem processes. Aquat Ecol 31:349–359

    Article  Google Scholar 

  15. Pruzzo C, Gallo G, Canesi L (2005) Persistence of Vibrios in marine bivalves: the role of interactions with hemolymph components. Environ Microbiol 7:761–772

    Article  PubMed  Google Scholar 

  16. Pujalte MJ, Ortigosa M, Macian MC, Garay E (1999) The annual cycle of aerobic and facultative anaerobic marine bacteria associated with mediterranean oysters and seawater. Int Microbiol 2:259–266

    CAS  PubMed  Google Scholar 

  17. Reis J (coord) (2006) Atlas dos Bivalves de água doce em Portugal continental. In: Instituto da Conservação da Natureza, Lisboa, 130 pp

  18. Rinkevich B, Muller WEG (1996) Invertebrate immunology. In: Progress in molecular and subcellular biology, vol 15. Springer, Berlin, p 247

  19. Silverman H, Achberger EC, Lynn JW, Dietz TH (1995) Filtration and utilization of laboratory-cultured bacteria by Dreissena polymorpha, Corbicula fluminea, and Carunculina texasensis. Biol Bull 189:308–319

    Article  Google Scholar 

  20. Soares-da-Silva IM, Ribeiro J, Valongo C, Pinto R, Vilanova M, Bleher R, Machado J (2002) Cytometric, morphologic and enzymatic characterisation of haemocytes in Anodonta cygnea. Comp Biochem Phys A 132:541–553

    CAS  Google Scholar 

  21. Sugita H, Tanaami H, Kobashi T, Deguchi Y (1981) Bacterial flora of coastal bivalves. Bull Jpn Soc Sci Fish 47:655–661

    Google Scholar 

  22. Vaughn CC, Nichols SJ, Spooner DE (2008) Community and foodweb ecology of freshwater mussels. J N Am Benthol Soc 27:409–423

    Article  Google Scholar 

  23. Zaccone R, Caruso G, Calì C, Scarfo R (1998) Primi dati sulla caratterizzazione microbiologica delle acque dell’Adriatico Settentrionale. In: Piccazzo M (ed) Atti del XII Congresso dell’Associazione Italiana di Oceanologia e Limnologia. Isola di Vulcano 18–21 Settembre 1996 (vol II, pp 487–497)

  24. Zampini M, Canesi L, Betti M, Ciacci C, Tarsi R, Gallo G, Pruzzo C (2003) Role for mannose-sensitive hemagglutitin in promoting interactions between Vibrio cholerae El Tor and mussel hemolymph. Appl Environ Microbiol 69:5711–5715

    Article  CAS  PubMed  Google Scholar 

  25. Zweifel UL, Hagström A (1995) Total counts of marine bacteria include a large fraction of non-nucleoid-containing bacteria (ghosts). Appl Environ Microbiol 61(6):2180–2185

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Martins da Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antunes, F., Hinzmann, M., Lopes-Lima, M. et al. Association Between Environmental Microbiota and Indigenous Bacteria Found in Hemolymph, Extrapallial Fluid and Mucus of Anodonta cygnea (Linnaeus, 1758). Microb Ecol 60, 304–309 (2010). https://doi.org/10.1007/s00248-010-9649-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9649-y

Keywords

Navigation